
© Michael Brydon (brydon@unixg.ubc.ca)
Last update: 25-Aug-1997 NextHome Previous 1 o f 16

Access Tutorial 12: An Introduction to Visual Basic

12.1 Introduction: Learning the
basics of programming

Programming can be an enormously complex and
difficult activity. Or it can be quite straightforward. In
either case, the basic programming concepts remain
the same. This tutorial is an introduction to a handful
of programming constructs that apply to any “third
generation” language, not only Visual Basic for
Applications (VBA).

Strictly speaking, the language that is
included with Access is not Visual Basic—it is
a subset of the full, stand-alone Visual Basic
language (which Microsoft sells separately).
In Access version 2.0, the subset is called
“Access Basic”. In version 7.0, it is slightly
enlarged subset called “Visual Basic for Appli-
cations” (VBA). However, in the context of the

simple programs we are writing here, these
terms are interchangeable.

12.1.1 Interacting with the interpreter
Access provides two ways of interacting with the
VBA language. The most useful of these is through
saved modules that contain VBA procedures. These
procedures (subroutines and functions) can be run to
do interesting things like process transactions
against master tables, provide sophisticated error
checking, and so on.

The second way to interact with VBA is directly
through the interpreter. Interpreted languages are
easier to experiment with since you can invoke the
interpreter at any time, type in a command, and
watch it execute. In the first part of this tutorial, you
are going to invoke Access’ VBA interpreter and exe-
cute some very simple statements.

Learning objectives12. An Introduction to Visual Basic

NextHome Previous 2 o f 16

In the second part of the tutorial, you are going to
create a couple of VBA modules to explore looping,
conditional branching, and parameter passing.

12.2 Learning objectives
� What is the debug/immediate window? How

do I invoke it?

� What are statements, variables, the
assignment operator, and predefined
functions?

� How do I create a module containing VBA
code?

� What are looping and conditional branching?
What language constructs can I use to
implement them?

� How do I use the debugger in Access?

� What is the difference between an interpreted
and compiled programming language?

12.3 Tutorial exercises

12.3.1 Invoking the interpreter
• Click on the module tab in the database window

and press New.

This opens the module window which we will use in
Section 12.3.3. You have to have a module window
open in order for the debug window to be available
from the menu.

• Select View > Debug Window from the main
menu. Note that Control-G can be used in ver-
sion 7.0 and above as a shortcut to bring up the
debug window.

In version 2.0, the “debug” window is called
the “immediate” window. As such, you have to
use View > Immediate Window. The term
debug window will be used throughout this
tutorial.

�

Tutorial exercises12. An Introduction to Visual Basic

NextHome Previous 3 o f 16

12.3.2 Basic programming constructs
In this section, we are going to use the debug win-
dow to explore some basic programming constructs.

12.3.2.1 Statements

Statements are special keywords in a programming
language that do something when executed. For
example, the Print statement in VBA prints an
expression on the screen.

• In the debug window, type the following:
Print “Hello world!” ↵

(the ↵ symbol at the end of a line means “press the
Return or Enter key”).

In VBA (as in all dialects of BASIC), the ques-
tion mark (?) is typically used as shorthand for
the Print statement. As such, the statement:
? “Hello world!” ↵ is identical to the
statement above.

12.3.2.2 Variables and assignment

A variable is space in memory to which you assign a
name. When you use the variable name in expres-
sions, the programming language replaces the vari-
able name with the contents of the space in memory
at that particular instant.

• Type the following:
s = “Hello” ↵
? s & “ world” ↵
? “s” & “ world” ↵

In the first statement, a variable s is created and the
string Hello is assigned to it. Recall the function of
the concatenation operator (&) from Section 4.4.2.

Contrary to the practice in languages like C
and Pascal, the equals sign (=) is used to
assign values to variables. It is also used as
the equivalence operator (e.g., does x = y ?).

Tutorial exercises12. An Introduction to Visual Basic

NextHome Previous 4 o f 16

When the second statement is executed, VBA recog-
nizes that s is a variable, not a string (since it is not
in quotations marks). The interpreter replaces s with
its value (Hello) before executing the Print com-
mand. In the final statement, s is in quotation marks
so it is interpreted as a literal string .

Within the debug window, any string of char-
acters in quotations marks (e.g., “COMM”) is
interpreted as a literal string. Any string with-
out quotation marks (e.g., COMM) is interpreted
as a variable (or a field name, if appropriate).
Note, however, that this convention is not uni-
versally true within different parts of Access.

12.3.2.3 Predefined functions

In computer programming, a function is a small pro-
gram that takes one or more arguments (or param-
eters) as input, does some processing, and returns
a value as output. A predefined (or built-in) function

is a function that is provided as part of the program-
ming environment.

For example, cos(x) is a predefined function in
many computer languages—it takes some number x
as an argument, does some processing to find its
cosine, and returns the answer. Note that since this
function is predefined, you do not have to know any-
thing about the algorithm used to find the cosine, you
just have to know the following:

1. what to supply as inputs (e.g., a valid numeric
expression representing an angle in radians),

2. what to expect as output (e.g., a real number
between -1.0 and 1.0).

The on-line help system provides these two
pieces of information (plus a usage example
and some additional remarks) for all VBA pre-
defined functions.

Tutorial exercises12. An Introduction to Visual Basic

NextHome Previous 5 o f 16

In this section, we are going to explore some basic
predefined functions for working with numbers and
text. The results of these exercises are shown in
Figure 12.1.

• Print the cosine of 2π radians:
pi = 3.14159 ↵
? cos(2*pi) ↵

• Convert a string of characters to uppercase:
s = “basic or cobol” ↵
? UCase(s) ↵

• Extract the middle six characters from a string
starting at the fifth character:
? mid (s,5,6) ↵

12.3.2.4 Remark statements

When creating large programs, it is considered good
programming practice to include adequate internal
documentation—that is, to include comments to
explain what the program is doing.

FIGURE 12.1: Interacting with the Visual Basic
interpreter.

The argument contains
an expression.

UCase() converts a
string to uppercase.

Mid() extracts
characters from the
string defined earlier.

Tutorial exercises12. An Introduction to Visual Basic

NextHome Previous 6 o f 16

Comment lines are ignored by the interpreter when
the program is run. To designate a comment in VBA,
use an apostrophe to start the comment, e.g.:

‘ This is a comment line!

Print “Hello” ‘the comment starts
here

The original REM (remark) statement from BASIC
can also be used, but is less common.

REM This is also a comment (remark)

12.3.3 Creating a module
• Close the debug window so that the declaration

page of the new module created in
Section 12.3.3 is visible (see Figure 12.2).

The two lines:
Option Compare Database

Option Explicit

are included in the module by default. The Option

Compare statement specifies the way in which

strings are compared (e.g., does uppercase/ lower-
case matter?). The Option Explicit statement
forces you to declare all your variables before using
them.

In version 2.0, Access does not add the
Option Explicit statement by default. As
such you should add it yourself.

FIGURE 12.2: The declarations page of a Visual
Basic module.

�

Tutorial exercises12. An Introduction to Visual Basic

NextHome Previous 7 o f 16

A module contains a declaration page and one or
more pages containing subroutines or user-defined
functions . The primary difference between subrou-
tines and functions is that subroutines simply exe-
cute whereas functions are expected to return a
value (e.g., cos()). Since only one subroutine or
function shows in the window at a time, you must
use the Page Up and Page Down keys to navigate
the module.

The VBA editor in version 8.0 has a number of
enhancements over earlier version, including
the capability of showing multiple functions
and subroutines on the same page.

12.3.4 Creating subroutines with looping
and branching

In this section, you will explore two of the most pow-
erful constructs in computer programming: looping
and conditional branching .

• Create a new subroutine by typing the following
anywhere on the declarations page:
Sub LoopingTest() ↵

Notice that Access creates a new page in the mod-
ule for the subroutine, as shown in Figure 12.3.

12.3.4.1 Declaring variables

When you declare a variable, you tell the program-
ming environment to reserve some space in memory
for the variable. Since the amount of space that is
required is completely dependent on the type of data
the variable is going to contain (e.g., string, integer,
Boolean, double-precision floating-point, etc.), you

�

Tutorial exercises12. An Introduction to Visual Basic

NextHome Previous 8 o f 16

have to include data type information in the declara-
tion statement.

In VBA, you use the Dim statement to declare vari-
ables.

• Type the following into the space between the
Sub... End Sub pair:

Dim i as integer

Dim s as string

• Save the module as basTesting .

One of the most useful looping constructs is For

<condition>... Next . All statements between
the For and Next parts are repeated as long as the
<condition> part is true. The index i is automati-
cally incremented after each iteration.

• Enter the remainder of the LoopingTest pro-
gram:

s = “Loop number: ”

For i = 1 To 10

Debug.Print s & i

Next i

• Save the module.

It is customary in most programming lan-
guages to use the Tab key to indent the ele-
ments within a loop slightly. This makes the
program more readable.

FIGURE 12.3: Create a new subroutine.

You can use the procedure
combo box to switch between
procedures in a module.

Tutorial exercises12. An Introduction to Visual Basic

NextHome Previous 9 o f 16

Note that the Print statement within the subroutine
is prefaced by Debug. This is due to the object-ori-
ented nature of VBA which will be explored in greater
detail in Tutorial 14.

12.3.4.2 Running the subroutine

Now that you have created a subroutine, you need to
run it to see that it works. To invoke a subroutine, you
simply use its name like you would any statement.

• Select View > Debug Window from the menu (or
press Control-G in version 7.0).

• Type: LoopingTest ↵ in the debug window, as
shown in Figure 12.4.

12.3.4.3 Conditional branching

We can use a different looping construct, Do Until

<condition>... Loop , and the conditional
branching construct, If <condition> Then...

Else , to achieve the same result.

FIGURE 12.4: Run the LoopingTest
subroutine in the debug window.

Invoke the LoopingTest subroutine
by typing its name in the debug window.�

Tutorial exercises12. An Introduction to Visual Basic

NextHome Previous 10 o f 16

• Type the following anywhere under the End Sub
statement in order to create a new page in the
module:

Sub BranchingTest ↵
• Enter the following program:

Dim i As Integer

Dim s As String

Dim intDone As Integer

s = “Loop number: “

i = 1

intDone = False

Do Until intDone = True

If i > 10 Then

Debug.Print “All done”

intDone = True

Else

Debug.Print s & i

i = i + 1

End If

Loop

• Run the program

12.3.5 Using the debugger
Access provides a rudimentary debugger to help you
step through your programs and understand how
they are executing. The two basic elements of the
debugger used here are breakpoints and stepping
(line-by-line execution).

• Move to the s = “Loop number: ” line in your
BranchingTest subroutine and select Run >
Toggle Breakpoint from the menu (you can also
press F9 to toggle the breakpoint on a particular
line of code).

Note that the line becomes highlighted, indicating the
presence of an active breakpoint. When the program
runs, it will suspend execution at this breakpoint and
pass control of the program back to you.

Tutorial exercises12. An Introduction to Visual Basic

NextHome Previous 11 o f 16

• Run the subroutine from the debug window, as
shown in Figure 12.5.

• Step through a couple of lines in the program
line-by-line by pressing F8.

By stepping through a program line by line, you can
usually find any program bugs. In addition, you can
use the debug window to examine the value of vari-
ables while the program’s execution is suspended.

• click on the debug window and type
? i ↵
to see the current value of the variable i .

12.3.6 Passing parameters
In the BranchingTest subroutine, the loop starts
at 1 and repeats until the counter i reaches 10. It
may be preferable, however, to set the start and fin-
ish quantities when the subroutine is called from the
debug window. To achieve this, we have to pass
parameters (or arguments) to the subroutine.

FIGURE 12.5: Execution of the subroutine is
suspended at the breakpoint.

The outlined box indicates the
current location of the
interpreter in the program. Press
F8 to execute the line of code.

Tutorial exercises12. An Introduction to Visual Basic

NextHome Previous 12 o f 16

The main difference between passed parameters
and other variables in a procedure is that passed
parameters are declared in the first line of the sub-
routine definition. For example, following subroutine
declaration

Sub BranchingTest(intStart as
Integer, intStop as Integer)

not only declares the variables intStart and
intStop as integers, it also tells the subroutine to
expect these two numbers to be passed as parame-
ters.

To see how this works, create a new subroutine
called ParameterTest based on Branch-

ingTest .
• Type the declaration statement above to create

the ParameterTest subroutine.
• Switch back to BranchingTest and highlight all

the code except the Sub and End Sub state-
ments, as shown in Figure 12.6.

FIGURE 12.6: Highlight the code to copy it.

Tutorial exercises12. An Introduction to Visual Basic

NextHome Previous 13 o f 16

• Copy the highlighted code to the clipboard (Con-
trol-Insert), switch to ParameterTest , and
paste the code (Shift-Insert) into the Parame-

terTest procedure.

To incorporate the parameters into ParameterT-

est , you will have to make the following modifica-
tions to the pasted code:

• Replace i = 1 with i = intStart .
• Replace i > 10 with i > intStop .
• Call the subroutine from the debug window by

typing:
ParameterTest 4, 12 ↵

If you prefer enclosing parameters in brack-
ets, you have to use the Call <sub

name>(parameter 1, ..., parameter n)
syntax. For example:
Call ParameterTest(4,12) ↵

12.3.7 Creating the Min() function
In this section, you are going to create a user-
defined function that returns the minimum of two
numbers. Although most languages supply such a
function, Access does not (the Min() and Max()
function in Access are for use within SQL statements
only).

• Create a new module called basUtilities .
• Type the following to create a new function:

Function MinValue(n1 as Single, n2

as Single) as Single ↵

This defines a function called MinValue that returns
a single-precision number. The function requires two
single-precision numbers as parameters.

Since a function returns a value, the data type
of the return value should be specified in the
function declaration. As such, the basic syn-
tax of a function declaration is:

Discussion12. An Introduction to Visual Basic

NextHome Previous 14 o f 16

Function <function

name>(parameter 1 As <data type>,

…, parameter n As <data type>) As

<data type>

The function returns a variable named
<function name> .

• Type the following as the body of the function:

If n1 <= n2 Then

MinValue = n1

Else

MinValue = n2

End If

• Test the function, as shown in Figure 12.7.

12.4 Discussion

12.4.1 Interpreted and compiled
languages

VBA is an interpreted language . In interpreted lan-
guages, each line of the program is interpreted (con-
verted into machine language) and executed when
the program is run. Other languages (such as C,
Pascal, FORTRAN, etc.) are compiled , meaning
that the original (source) program is translated and
saved into a file of machine language commands.
This executable file is run instead of the source
code.

Predictably, compiled languages run much faster
then interpreted languages (e.g., compiled C++ is
generally ten times faster than interpreted Java).
However, interpreted languages are typically easier
to learn and experiment with.

Discussion12. An Introduction to Visual Basic

NextHome Previous 15 o f 16

FIGURE 12.7: Testing the MinValue() function.

Implement the MinValue()
function using conditional branching.�

These five lines could be replaced with one line:
MinValue = iif(n1 <= n2, n1, n2)

Test the function by passing it
various parameter values.�

According to the function
declaration, MinValue()
expects two single-precision
numbers as parameters.
Anything else generates an error.

Application to the assignment12. An Introduction to Visual Basic

NextHome Previous 16 o f 16

12.5 Application to the assignment
You will need a MinValue() function later in the
assignment when you have to determine the quantity
to ship.

• Create a basUtilities module in your assign-
ment database and implement a MinValue()
function.

To ensure that no confusion arises between
your user-defined function and the built-in
SQL Min() function, do not call you function
Min() .

© Michael Brydon (brydon@unixg.ubc.ca)
Last update: 25-Aug-1997 NextHome Previous 1 o f 26

Access Tutorial 13: Event-Driven Pro grammin g
Usin g Macros

13.1 Introduction: What is event-
driven programming?

In conventional programming, the sequence of oper-
ations for an application is determined by a central
controlling program (e.g., a main procedure). In
event-driven programming, the sequence of opera-
tions for an application is determined by the user’s
interaction with the application’s interface (forms,
menus, buttons, etc.).

For example, rather than having a main procedure
that executes an order entry module followed by a
data verification module followed by an inventory
update module, an event-driven application remains
in the background until certain events happen: when
a value in a field is modified, a small data verification
program is executed; when the user indicates that

the order entry is complete, the inventory update
module is executed, and so on.

Event-driven programming, graphical user interfaces
(GUIs), and object-orientation are all related since
forms (like those created in Tutorial 6) and the
graphical interface objects on the forms serve as the
skeleton for the entire application. To create an
event-driven application, the programmer creates
small programs and attaches them to events associ-
ated with objects, as shown in Figure 13.1. In this
way, the behavior of the application is determined by
the interaction of a number of small manageable pro-
grams rather than one large program.

Introduction: What is event-driven programming?13. Event-Driven Pro grammin g Usin g Macros

NextHome Previous 2 o f 26

13.1.1 Triggers
Since events on forms “trigger” actions, event/proce-
dure combinations are sometimes called tri ggers .

For example, the action query you attached to a but-
ton in Section 11.3.5 is an example of a simple, one-
action trigger. However, since an action query can
only perform one type of action, and since you typi-
cally have a number of actions that need to be per-
formed, macros or Visual Basic procedures are
typically used to implement a triggers in Access.

13.1.2 The Access macro language
As you discovered in Tutorial 12, writing simple VBA
programs is not difficult, but it is tedious and error-
prone. Furthermore, as you will see in Tutorial 14,
VBA programming becomes much more difficult
when you have to refer to objects using the naming
conventions of the database object hierarchy. As a
consequence, even experienced Access program-

properties

events

interface object
cmdUpdateCredits

Caption
Enabled
...

On Click
On Got Focus
...

procedure

FIGURE 13.1: In a tri gger, a procedure is
attached to an event.

An object, such as the
button created in
Section 11.3.5, has
predefined properties and
events. For a button, the
most important event is
On Click.

A procedure (such as an
action query, macro, or VBA
function or subroutine) can be
attached to an event. When
the event occurs, the
procedure is executed.

Learning objectives13. Event-Driven Programming Using Macros

NextHome Previous 3 o f 26

mers often turn to the Access macro language to
implement basic triggers.

The macro language itself consists of 40 or so com-
mands. Although it is essentially a procedural lan-
guage (like VBA), the commands are relatively high
level and easy to understand. In addition, the macro
editor simplifies the specification of the action argu-
ments (parameters).

13.1.3 The trigger design cycle
To create a trigger, you need to answer two ques-
tions:

1. What has to happen?
2. When should it happen?

Once you have answered the first question (“what”),
you can create a macro (or VBA procedure) to exe-
cute the necessary steps. Once you know the
answer to the second question (“when”), you can

attach the procedure to the correct event of the cor-
rect object.

Selecting the correct object and the correct
event for a trigger is often the most difficult
part of creating an event-driven application. It
is best to think about this carefully before you
get too caught up in implementing the proce-
dure.

13.2 Learning objectives
� What is event-driven programming? What is a

trigger?

� How do I design a trigger?

� How does the macro editor in Access work?

� How do I attach a macro to an event?

� What is the SetValue action? How is it used?

Tutorial exercises13. Event-Driven Programming Using Macros

NextHome Previous 4 o f 26

� How do I make the execution of particular
macro actions conditional?

� What is a switchboard and how do I create
one for my application?

� How to I make things happen when the
application is opened?

� What are the advantages and disadvantages
of event-driven programming?

13.3 Tutorial exercises
In this tutorial, you will build a number of very simple
triggers using Access macros. These triggers, by
themselves, are not particularly useful and are
intended for illustrative purposes only.

13.3.1 The basics of the macro editor
In this section, you are going to eliminate the warn-
ing messages that precede the trigger you created
Section 11.3.5.

As such, the answer to the “what” question is the fol-
lowing:

1. Turn off the warnings so the dialog boxes do not
pop up when the action query is executed;

2. Run the action query; and,
3. Turn the warnings back on (it is generally good

programming practice to return the environment
to its original state).

Since a number of things have to happen, you can-
not rely on an action query by itself. You can, how-
ever, execute a macro that executes several actions
including one or more action queries.

Tutorial exercises13. Event-Driven Programming Using Macros

NextHome Previous 5 o f 26

• Select the Macros tab from the database window
and press New. This brings up the macro editor
shown in Figure 13.2.

• Add the three commands as shown in
Figure 13.3. Note that the OpenQuery command
is used to run the action query.

• Save the macro as mcrUpdateCredits and
close it.

13.3.2 Attaching the macro to the event
The answer to the “when” question is: When the
cmdUpdateCredits button is pressed. Since you
already created the button in Section 11.3.5, all you
need to do is modify its On Click property to point the
mcrUpdateCredits macro.

• Open frmDepartments in design mode.
• Bring up the property sheet for the button and

scroll down until you find the On Click property,
as shown in Figure 13.4.

FIGURE 13.4: Bring up the On Click property for
the button.

The button wizard attached a
VBA procedure to the button.

Tutorial exercises13. Event-Driven Programming Using Macros

NextHome Previous 6 o f 26

FIGURE 13.2: The macro editor.

Macro actions can be selected from a list. The
SetWarnings command is used to turn the warning
messages (e.g., before you run an action query) on and off.

In the comment column, you can
document your macros as required

Most actions have one or
more arguments that
determine the specific
behavior of the action. In
this case, the
SetWarnings action is
set to turn warnings off.

The area on the right
displays information about
the action.

Multiple commands are
executed from top to
bottom.

Tutorial exercises13. Event-Driven Programming Using Macros

NextHome Previous 7 o f 26

FIGURE 13.3: Create a macro that answers the “what” question.

Add the three commands to
the macro.�

The arguments for the two
SetWarnings actions
are straightforward. For the
OpenQuery command,
you can select the query to
open (or run) from a list.
Since this is an action
query, the second and third
arguments are not
applicable.

�

Tutorial exercises13. Event-Driven Programming Using Macros

NextHome Previous 8 o f 26

• Press the builder button () beside the existing
procedure and look at the VBA subroutine cre-
ated by the button wizard. Most of this code is for
error handling.

Unlike the stand-along VBA modules you cre-
ated in Tutorial 12, this module (collection of
functions and subroutines) is embedded in
the frmDepartments form.

• Since you are going to replace this code with a
macro, you do not want it taking up space in your
database file. Highlight the text in the subroutine
and delete it. When you close the module win-
dow, you will see the reference to the “event pro-
cedure” is gone.

• Bring up the list of choice for the On Click prop-
erty as shown in Figure 13.5. Select mcrUp-

dateCredits .

FIGURE 13.5: Select the macro to attach to the
On Click property.

Press the arrow to get a list
of available macros�

Tutorial exercises13. Event-Driven Programming Using Macros

NextHome Previous 9 o f 26

• Switch to form view and press the button. Since
no warnings appear, you may want to press the
button a few times (you can always use your roll-
back query to reset the credits to their original
values).

13.3.3 Creating a check box to display
update status information

Since the warning boxes have been disabled for the
update credits trigger, it may be useful to keep track
of whether courses in a particular department have
already been updated.

To do this, you can add a field to the Departments
table to store this “update status” information.

• Edit the Departments table and add a Yes/No
field called CrUpdated .

If you have an open query or form based on
the Departments table, you will not be able

to modify the structure of the table until the
query or form is closed.

• Set the Caption property to Credits updated?
and the Default property to No as shown in
Figure 13.6.

Changes made to a table do not automatically carry
over to forms already based on that table. As such,
you must manually add the new field to the depart-
ments form.

• Open frmDepartments in design mode.
• Make sure the toolbox and field list are visible.

Notice that the new field (CrUpdated) shows up
in the field list.

• Use the same technique for creating combo
boxes to create a bound check box control for the
yes/no field. This is shown in Figure 13.7.

Tutorial exercises13. Event-Driven Programming Using Macros

NextHome Previous 10 o f 26

13.3.4 The SetValue command
So far, you have used two commands in the Access
macro language: SetWarnings and OpenQuery . In

this section, you are going to use one of the most
useful commands—SetValue —to automatically
change the value of the CrUpdated check box.

• Open your mcrUpdateCredits macro in design
mode and add a SetValue command to change
the CrUpdated check box to Yes (or True , if
you prefer). This is shown in Figure 13.8.

• Save the macro and press the button on the form.
Notice that the value of the check box changes,
reminding you not to update the courses for a
particular department more than once.

13.3.5 Creating conditional macros
Rather than relying on the user not to run the update
when the check box is checked, you may use a con-
ditional macro to prevent an update when the
check box is checked.

FIGURE 13.6: Add a field to the Departments
table to record the status of updates.

Tutorial exercises13. Event-Driven Programming Using Macros

NextHome Previous 11 o f 26

FIGURE 13.7: Add a check box control to keep track of the update status.

Select the check box tool
from the toolbox.�

Drag the CrUpdated field from the
field list to the detail section.�

A check box is a control
that can be bound to fields
of the yes/no data type.
When the box is checked,
True is stored in the
table; when the box is
unchecked, False is
stored.

Tutorial exercises13. Event-Driven Programming Using Macros

NextHome Previous 12 o f 26

FIGURE 13.8: Add a SetValue command to set the value of the update status field when the
update is compete.

Pick the SetValue command
from the list or simply type it in.�

The Item argument is the thing you
want the SetValue action to set the
value of. You can use the builder or
simply type in CrUpdate .

�
The Expression argument is the
value you want the SetValue
action to set the value of the Item
to. Type in Yes (no quotation
marks are required since Yes is
recognized as a constant in this
context).

�

Tutorial exercises13. Event-Driven Programming Using Macros

NextHome Previous 13 o f 26

• Select View > Conditions to display the condi-
tions column in the macro editor as shown in
Figure 13.9.

13.3.5.1 The simplest conditional macro

If there is an expression in the condition column of a
macro, the action in that row will execute if the condi-
tion is true. If the condition is not true, the action will
be skipped.

• Fill in the condition column as shown in
Figure 13.10. Precede the actions you want to
execute if the check box is checked with [CrUp-

dated] . Precede the actions you do not want to
execute with Not [CrUpdated] .

Since CrUpdated is a Boolean (yes/no) vari-
able, you do not need to write [CrUpdated]

= True or [CrUpdated] = False . The
true and false parts are implied. However, if a
non-Boolean data type is used in the expres-
sion, a comparison operator must be included
(e.g., [DeptCode] = “COMM” , [Cred-

its] < 3 , etc.)

FIGURE 13.9: Display the macro editors
condition column

Select View > Conditions or press the
“conditions” button on the tool bar.�

Tutorial exercises13. Event-Driven Programming Using Macros

NextHome Previous 14 o f 26

FIGURE 13.10: Create a conditional macro to control which actions execute.

The expression Not [CrUpdated]
is true if the CrUpdated check box is
not checked. Use this expression in
front of the actions you want to execute
in this situation.

�

The expression [CrUpdated] is
true if the CrUpdated check box is
checked. In this situation, you should
indicate to the user that the update is
not being performed.

�

The MsgBox action displays a
standard Windows message box. You
can set the message and other message
box features in the arguments section.

�

Tutorial exercises13. Event-Driven Programming Using Macros

NextHome Previous 15 o f 26

• Switch to the form and test the macro by pressing
the button. If the CrUpdated check box is
checked, you should get a message similar to
that shown in Figure 13.11.

13.3.5.2 Refining the conditions

The macro shown in Figure 13.10 can be improved
by using an ellipsis (…) instead of repeating the
same condition in line after line. In this section, you
will simplify your conditional macro slightly.

Move the message box action and condition to the
top of the list of actions by dragging its record selec-
tor (grey box on the left).

• Insert a new row immediately following the mes-
sage and add a StopMacro action, as shown in
Figure 13.12.

The macro in Figure 13.12 executes as follows: If
CrUpdate is true (i.e., the box is checked), the
MsgBox action executes. Since the next line has an
ellipsis in the condition column, the condition contin-
ues to apply. However, that action on the ellipsis line
is StopMacro , and thus the macro ends without
executing the next four lines.

FIGURE 13.11: The action query is not executed
and the message box appears instead.

Tutorial exercises13. Event-Driven Programming Using Macros

NextHome Previous 16 o f 26

If the CrUpdate box is not checked, the first two
lines are ignored (i.e., the lines with the false condi-
tion and the ellipsis) and the update proceeds.

13.3.5.3 Creating a group of named macros

It is possible to store a number of related macros
together in one macro “module”. These group mac-
ros have two advantages:

1. Modular macros can be created — instead of
having a large macro with many conditions and
branches, you can create a small macro that call
other small macros.

2. Similar macros can be grouped together — for
example, you could keep all you Departments -
related macros or search-related macros in a
macro group.

In this section, we will focus on the first advantage.
• Select View > Macro Names to display the macro

name column.

FIGURE 13.12: Rearrange the macro actions and
insert a new row.

Click the record selector and drag the
message box action to the top of the list.�

Right-click where you would like
to insert a new row and select
Insert Row from the popup menu.

�

Add an ellipsis
(…) and a
StopMacro
action.

�

Tutorial exercises13. Event-Driven Programming Using Macros

NextHome Previous 17 o f 26

• Perform the steps in Figure 13.13 to modularize
your macro.

• Change the macro referred to in the On Click
property of the cmdUpdateCredits button from
mcrUpdateCredits to
mcrUpdateCredits.CheckStatus .

• Test the operation of the button.

13.3.6 Creating switchboards
One of the simplest (but most useful) triggers is an
OpenForm command attached to a button on a form
consisting exclusively of buttons.

This type of “switchboard” (as shown in
Figure 13.14) can provide the user with a means of
navigating the application.

• Create an unbound form as shown in
Figure 13.15.

• Remove the scroll bars, navigation buttons, and
record selectors from the form using the form’s
property sheet.

• Save the form as swbMain .

There are two ways to add button-based triggers to a
form:

1. Turn the button wizard off, create the button, and
attach an macro containing the appropriate
action (or actions).

2. Turn the button wizard on and use the wizard to
select from a list of common actions (the wizard
writes a VBA procedure for you).

Since the wizard can only attach one action to
a button (such as opening a form or running
an action query) it is less flexible than a
macro. However, once you are more comfort-
able with VBA, there is nothing to stop you

Tutorial exercises13. Event-Driven Programming Using Macros

NextHome Previous 18 o f 26

FIGURE 13.13: Use named macros to modularize the macro.

Select View > Macro Names to display
the macro names column.�

Create a named macro called
CheckStatus that contains the
conditional logic for the procedure.

�

The RunMacro action executes a
particular macro. Select the macro to
execute from a list in the arguments pane.
Note the naming convention for macros
within a macro group.

�

Create two other macros, Updated and
NotUpdated that correspond to the
logic in the CheckStatus macro.

�

A macro executes until it encounters a
blank line. Use blank lines to separate the
named macros within a group.

Tutorial exercises13. Event-Driven Programming Using Macros

NextHome Previous 19 o f 26

FIGURE 13.14: A switchboard interface to the application.

The command buttons are placed on an
unbound form. Note the absence of scroll bars,
record selectors, or navigation buttons.

Gratuitous clip art can be used to
clutter your forms and reduce the
application’s overall performance.

Shortcut keys are include on each
button to allow the user to navigate
the application with keystrokes.

Although it is not shown here, switchboards can
call other switchboards, allowing you to add a
hierarchical structure to your application.

Tutorial exercises13. Event-Driven Programming Using Macros

NextHome Previous 20 o f 26

FIGURE 13.15: Create an unbound form as the
switchboard background.

Select Design View (no wizard) and
leave the “record source” box empty.�

The result is a blank form on which
you can build your switchboard.�

Tutorial exercises13. Event-Driven Programming Using Macros

NextHome Previous 21 o f 26

from editing the VBA modules created by the
wizard to add additional functionality.

13.3.6.1 Using a macro and manually-created
buttons

• Ensure the wizard is turned off and use the but-
ton tool to create a button.

• Modify the properties of the button as shown in
Figure 13.16.

• Create a macro called
mcrSwitchboard.OpenDept and use the
OpenForm command to open the form frmDe-

partments .
• Attach the macro to the On Click event of the

cmdDepartments button.
• Test the button.

13.3.6.2 Using the button wizard
• Turn the button wizard back on and create a new

button.

• Follow the directions provided by the wizard to
set the action for the button (i.e., open the frm-

Courses form) as shown in Figure 13.17.
• Change the button’s font and resize it as

required.

You can standardize the size of your form
objects by selecting more than one and using
Format > Size > to Tallest and to Widest com-
mands. Similarly, you can select more than
one object and use the “multiple selection”
property sheet to set the properties all at
once.

13.3.7 Using an autoexec macro
If you use the name autoexec to save a macro (in
lieu of the normal mcr<name> convention), Access
will execute the macro actions when the database is
opened. Consequently, auto-execute macros are

Tutorial exercises13. Event-Driven Programming Using Macros

NextHome Previous 22 o f 26

FIGURE 13.16: Create a button and modify its appearance.

Use the button tool to create a button
(ensure the wizard activated).� Give the button a meaningful name

(e.g., cmdDepartments) and caption
(including a shortcut key.).

�

Scroll down the property sheet and change
the value of the button’s Font Size property.
Resize the button by dragging its handles.

�

Tutorial exercises13. Event-Driven Programming Using Macros

NextHome Previous 23 o f 26

FIGURE 13.17: Use the command button wizard to create a button for the switchboard.

Select Form Operations > Open Form as
the action type associated with the button.�

Select the correct form
from the list.�

Provide a caption
for the button.�

Tutorial exercises13. Event-Driven Programming Using Macros

NextHome Previous 24 o f 26

often used to display a switchboard when the user
starts the application.

Another typical auto-execute operation is to hide the
database window. By doing this, you unclutter the
screen and reduce the risk of a user accidentally
making a change to the application (by deleting a
database object, etc.).

To unhide the database window, select Win-
dow > Unhide from the main menu or press
the database window icon () on the toolbar.

The problem with hiding the database window using
a macro is that there is no HideDatabaseWindow
command in the Access macro language. As such,
you have to rely on the rather convoluted DoMenu-

Item action.

As its name suggests, the DoMenuItem action per-
forms an operation just as if it had been selected

from the menu system. Consequently, you need to
know something about the menu structure of Access
before you create your macro.

In version 8.0, the DoMenuItem action has
been replaced by the slightly more intuitive
RunCommand action. See on-line help for
more information on RunCommand.

• Create an auto-execute macro
• Add the DoMenuItem and OpenForm actions to

hide the database window and open the main
switchboard, as shown in Figure 13.18.

• Close the database and reopen it after a short
delay to test the macro.

In version 7.0 and above, you do not need to
use an autoexec macro to hide the database
window and open a form. Instead, you can
right-click on the database window, select

�

Discussion13. Event-Driven Programming Using Macros

NextHome Previous 25 o f 26

Startup, and fill in the properties for the appli-
cation.

13.4 Discussion

13.4.1 Event-driven programming versus
conventional programming

The primary advantages of event-driven program-
ming are the following:

1. Flexibility — since the flow of the application is
controlled by events rather than a sequential pro-
gram, the user does not have to conform to the
programmer’s understanding of how tasks should
be executed.

2. Robustness — Event-driven applications tend to
be more robust since they are less sensitive to
the order in which users perform activities. In
conventional programming, the programmer has
to anticipate virtually every sequence of activities
the user might perform and define responses to
these sequences.

FIGURE 13.18: Create an auto-execute macro.

For the DoMenuItem action, select the
Window > Hide commands from the
Database menu (i.e., the menu that is active
when the database window is being used).

�

Application to the assignment13. Event-Driven Programming Using Macros

NextHome Previous 26 o f 26

The primary disadvantage of event-driven programs
is that it is often difficult to find the source of errors
when they do occur. This problem arises from the
object-oriented nature of event-driven applications—
since events are associated with a particular object
you may have to examine a large number of objects
before you discover the misbehaving procedure.
This is especially true when events cascade (i.e., an
event for one object triggers an event for a different
object, and so on).

13.5 Application to the assignment
• Add “update status” check boxes to you transac-

tion processing forms (i.e., Orders and Ship-

ments)
• Create a conditional macro for your Shipments

form to prevent a particular shipment from being
added to inventory more than once.

• Create a main switchboard for you application. It
should provide links to all the database objects
your user is expected to have access to (i.e., your
forms).

© Michael Brydon (brydon@unixg.ubc.ca)
Last update: 25-Aug-1997 NextHome Previous 1 o f 22

Access Tutorial 14: Data Access Objects

14.1 Introduction: What is the DAO
hierarchy?

The core of Microsoft Access and an important part
of Visual Basic (the stand-alone application develop-
ment environment) is the Microsoft Jet database
engine. The relational DBMS functionality of Access
comes from the Jet engine; Access itself merely pro-
vides a convenient interface to the database engine.

Because the application environment and the data-
base engine are implemented as separate compo-
nents, it is possible to upgrade or improve Jet
without altering the interface aspects of Access, and
vice-versa.

Microsoft takes this component-based approach fur-
ther in that the interface to the Jet engine consists of
a hierarchy of components (or “objects”) called Data
Access Objects (DAO). The advantage of DAO is

that its modularity supports easier development and
maintenance of applications.

The disadvantage is that is you have to understand a
large part of the hierarchy before you can write your
first line of useful code. This makes using VBA diffi-
cult for beginners (even for those with considerable
experience writing programs in BASIC or other
3GLs*).

14.1.1 DAO basics
Although you probably do not know it, you already
have some familiarity with the DAO hierarchy. For
example, you know that a Database object (such as
univ0_v x.mdb) contains other objects such as
tables (TableDef objects) and queries (QueryDef
objects). Moving down the hierarchy, you know that
TableDef objects contain Field objects.

* Third-generation programming languages.

Introduction: What is the DAO hierarchy?14. Data Access Objects

NextHome Previous 2 o f 22

Unfortunately, the DAO hierarchy is somewhat more
complex than this. However, at this level, it is suffi-
cient to recognize three things about DAO:

1. Each object that you create is an instance of a
class of similar objects (e.g., univ0_v x is a par-
ticular instance of the class of Database objects).

2. Each object may contain one or more Collec-
tions of objects. Collections simply keep all
objects of a similar type or function under one
umbrella. For example, Field objects such as
DeptCode and CrsNum are accessible through a
Collection called Fields).

3. Objects have properties and methods (see
below).

14.1.2 Properties and methods
You should already be familiar with the concept of
object properties from the tutorial on form design
(Tutorial 6). The idea is much the same in DAO:

every object has a number of properties that can be
either observed (read-only properties) or set (read/
write properties). For example, each TableDef (table
definition) object has a read-only property called
DateCreated and a read/write property called Name.
To access an object’s properties in VBA, you nor-
mally use the <object name>.<property

name> syntax, e.g.,
Employees.DateCreated .

To avoid confusion between a property called
DateCreated and a field (defined by you)
called DateCreated , Access version 7.0
and above require that you use a bang (!)
instead of a period to indicate a field name or
some other object created by you as a devel-
oper. For example:
Employees!DateCreated.Value

identifies the Value property of the DateCre-

Introduction: What is the DAO hierarchy?14. Data Access Objects

NextHome Previous 3 o f 22

ated field (assuming one exists) in the
Employees table.

Methods are actions or behaviors that can be
applied to objects of a particular class. In a sense,
they are like predefined functions that only work in
the context of one type of object. For example, all
Field objects have a method called FieldSize that
returns the size of the field. To invoke a object’s
methods, you use the
<object name>.<method> [parameter 1,

..., parameter n] syntax, e.g.,:
DeptCode.FieldSize .

A reasonable question at this point might be:
Isn’t FieldSize a property of a field, not a
method? The answer to this is that the imple-
mentation of DAO is somewhat inconsistent in
this respect. The best policy is to look at the

object summaries in the on-line help if you are
unsure.

A more obvious example of a method is the Cre-

ateField method of TableDef objects, e.g.:
Employees.CreateField(“Phone”,

dbText, 25)

This creates a field called Phone , of type dbText (a
constant used to represent text), with a length of 25
characters.

14.1.3 Engines, workspaces, etc.
A confusing aspect of the DAO hierarchy is that you
cannot simply refer to objects and their properties as
done in the examples above. As Figure 14.1 illus-
trates, you must include the entire path through the
hierarchy in order to avoid any ambiguity between,
say, the DeptCode field in the Courses TableDef
object and the DeptCode field in the qryCourses
QueryDef object.

Introduction: What is the DAO hierarchy?14. Data Access Objects

NextHome Previous 4 o f 22

Courses

DBEngine

Workspaces

TableDefs

other classes...

FIGURE 14.1: Navigating the DAO hierarchy.

Databases

QueryDefs Recordsets other classes...

Indexes

Fields

other tables... qryCourses other queries...

DeptCode

Indexes

Fields

DeptCode
Legend

Courses

TableDefs object or collection

instance

To access a particular field, you
have to understand the structure
of the DAO hierarchy.

By creating a database object at
the start of your VBA
programs, you bypass the top
part of the hierarchy.

Learning objectives14. Data Access Objects

NextHome Previous 5 o f 22

Working down through the hierarchy is especially
confusing since the first two levels (DBEngine and
Workspaces) are essentially abstractions that have
no physical manifestations in the Access environ-
ment. The easiest way around this is to create a
Database object that refers to the currently open
database (e.g., univ0_v x.mdb) and start from the
database level when working down the hierarchy.
Section 14.3.1 illustrates this process for version 2.0.

14.2 Learning objectives
� What is the DAO hierarchy?

� What are objects? What are properties and
methods?

� How do I create a reference to the current
database object? Why is this important?

� What is a recordset object?

� How do I search a recordset?

14.3 Tutorial exercises

14.3.1 Setting up a database object
In this section you will write VBA code that creates a
pointer to the currently open database.

• Create a new module called basDAOTest (see
Section 12.3.3 for information on creating a new
module).

• Create a new subroutine called PrintRecords .
• Define the subroutine as follows:

Dim dbCurr As DATABASE

Set dbCurr =
DBEngine.Workspaces(0).Databases(0)

Debug.Print dbCurr.Name

• Run the procedure, as shown in Figure 14.2.

Let us examine these three statements one by one.

1. Dim dbCurr As DATABASE

This statement declares the variable dbCurr as
an object of type Database. For complex objects

Tutorial exercises14. Data Access Objects

NextHome Previous 6 o f 22

FIGURE 14.2: Create a pointer to the current database.

Declare and set the pointer
(dbCurr) to the current
database.

�

Add a line to print the name
of the database.�

Run the procedure to
ensure it works.�

Version 7.0 and above support a less
cumbersome way referring to the current
database—the CurrentDb function:
Set dbCurr = CurrentDb

Although you can use the
Print statement by itself
in the debug window, you
must invoke the Print
method of the Debug object
from a module—hence the
Debug.Print syntax.

Tutorial exercises14. Data Access Objects

NextHome Previous 7 o f 22

(in contrast to simple data types like integer,
string, etc.) Access does not allocate memory
space for a whole database object. Instead, it
allocates space for a pointer to a database
object. Once the pointer is created, you must set
it to point to an object of the declared type (the
object may exist already or you may have to cre-
ate it).

2. Set dbCurr = DBEngine.Work-

spaces(0).Databases(0)

(Note: this should be typed on one line). In this
statement, the variable dbCurr (a pointer to a
Database object) is set to point to the first Data-
base in the first Workspace of the only Database
Engine. Since the numbering of objects within a
collection starts at zero, Databases(0) indi-
cates the first Database object. Note that the first
Database object in the Databases collection is
always the currently open one.

Do not worry if you are not completely sure
what is going on at this point. As long as you
understand that you can type the above two
lines to create a pointer to your database,
then you are in good shape.

3. Debug.Print dbCurr.Name

This statement prints the name of the object to
which dbCurr refers.

14.3.2 Creating a Recordset object
As its name implies, a TableDef object does not con-
tain any data; instead, it merely defines the structure
of a table. When you view a table in design mode,
you are seeing the elements of the TableDef object.
When you view a table in datasheet mode, in con-
trast, you are seeing the contents of Recordset
object associated with the table.

Tutorial exercises14. Data Access Objects

NextHome Previous 8 o f 22

To access the data in a table using VBA, you have to
invoke the OpenRecordset method of the Data-
base object. Since most of the processing you do in
VBA involves data access, familiarity with Recordset
objects is essential. In this section, you will create a
Recordset object based on the Courses table.

• Delete the Debug.Print dbCurr.Name line
from your program.

• Add the following:

Dim rsCourses As Recordset

Set rsCourses =
dbCurr.OpenRecordset(“Courses”)

The first line declares a pointer (rsCourses) to a
Recordset object. The second line does two things:

1. Invokes the OpenRecordset method of dbCurr
to create a Recordset object based on the table
named “Courses” . (i.e., the name of the table is
a parameter for the OpenRecordset method).

2. Sets rsCourses to point to the newly created
recordset.

Note that this Set statement is different than the pre-
vious one since the OpenRecordset method
results in a new object being created (dbCurr points
to an existing database—the one you opened when
you started Access).

14.3.3 Using a Recordset object
In this section, you will use some of the properties
and methods of a Recordset object to print its con-
tents.

• Add the following to PrintRecords :

Do Until rsCourses.EOF

Debug.Print rsCourses!DeptCode & “ ”
& rsCourses!CrsNum

rsCourses.MoveNext

Loop

• This code is explained in Figure 14.3.

Tutorial exercises14. Data Access Objects

NextHome Previous 9 o f 22

FIGURE 14.3: Create a program to loop through the records in a Recordset object.

EOF is a property of the recordset.
It is true if the record counter has
reached the “end of file” (EOF)
marker and false otherwise.

The exclamation mark (!) indicates
that DeptCode is a user-defined
field (rather than a method or
property) of the recordset object.

Since the Value property is the default property
of a field, you do not have to use the
<recordset>!<field>.Value syntax.

The MoveNext method moves the
record counter to the next record in
the recordset.

Tutorial exercises14. Data Access Objects

NextHome Previous 10 o f 22

14.3.4 Using the FindFirst method
In this section, you will use the FindFirst method
of Recordset objects to lookup a specific value in a
table.

• Create a new function called MyLookUp() using
the following declaration:

Function MyLookUp(strField As
String, strTable As String,
strWhere As String) As String

An example of how you would use this function is to
return the Title of a course from the Courses
table with a particular DeptCode and CrsNum. In
other words, MyLookUp() is essentially an SQL
statement without the SELECT, FROM and WHERE
clauses.

The parameters of the function are used to specify
the name of the table (a string), the name of the field
(a string) from which you want the value, and a

WHERE condition (a string) that ensures that only one
record is found.

For example, to get the Title of COMM 351 from
the Courses table, you would provide MyLookUp()
with the following parameters:

1. “Title” — a string containing the name of the
field from which we want to return a value;

2. “Course” — a string containing the name of the
source table; and,

3. “DeptCode = ‘COMM’ AND CrsNum =

‘335’” — a string that contains the entire
WHERE clause for the search.

Note that both single and double quotation
marks must be used to signify a string within a
string. The use of quotation marks in this
manner is consistent with standard practice in
English. For example, the sentence:
“He shouted, ‘Wait for me.’” illus-

Tutorial exercises14. Data Access Objects

NextHome Previous 11 o f 22

trates the use of single quotes within double
quotes.

• Define the MyLookUp() function as follows:

Dim dbCurr As DATABASE

Set dbCurr = CurrentDb

If you are using version 2.0, you cannot use
the CurrentDb method to return a pointer to
the current database. You must use long form
(i.e., Set dbCurr = DBEngine…)

Dim rsRecords As Recordset

Set rsRecords =
dbCurr.OpenRecordset(strTable,
dbOpenDynaset)

In version 2.0, the name of some of the pre-
defined constants are different. As such, you
must use DB_OPEN_DYNASET rather than
dbOpenDynaset to specify the type of

Recordset object to be opened (the Find-

First method only works with “dynaset” type
recordsets, hence the need to include the
additional parameter in this segment of code).

rsRecords.FindFirst strWhere

VBA uses a rather unique convention to
determine whether to enclose the arguments
of a function, subroutine, or method in paren-
theses: if the procedure returns a value,
enclose the parameters in parentheses; oth-
erwise, use no parentheses. For example, in
the line above, strWhere is a parameter of
the FindFirst method (which does not
return a value).

If Not rsRecords.NoMatch() Then

MyLookUp =
rsRecords.Fields(strField).Value

�

�

Tutorial exercises14. Data Access Objects

NextHome Previous 12 o f 22

Else

MyLookUp = “”

End If

• Execute the function with the following statement
(see Figure 14.4):

? MyLookUp(“Title”, “Courses”,
“DeptCode = 'COMM' AND CrsNum =
'351'”)

As it turns out, what you have implemented exists
already in Access in the form of a predefined func-
tion called DLookUp() .

• Execute the DLookUp() function by calling it in
the same manner in which you called
MyLookUp() .

14.3.5 The DLookUp() function
The DLookUp() function is the “tool of last resort” in
Access. Although you normally use queries and
recordsets to provide you with the information you

need in your application, it is occasionally necessary
to perform a stand-alone query—that is, to use the
DLookUp() function to retrieve a value from a table
or query.

When using DLookUp() for the first few times, the
syntax of the function calls may seem intimidating.
But all you have to remember is the meaning of a
handful of constructs that you have already used.
These constructs are summarized below:

• Functions — DLookUp() is a function that
returns a value. It can be used in the exact same
manner as other functions, e.g.,
x = DLookUp(…) is similar to
x = cos(2*pi) .

• Round brackets () — In Access, round brackets
have their usual meaning when grouping
together operations, e.g., 3*(5+1) . Round
brackets are also used to enclose the arguments
of function calls, e.g., x = cos(2*pi) .

Tutorial exercises14. Data Access Objects

NextHome Previous 13 o f 22

FIGURE 14.4: MyLookUp() : A function to find a value in a table.

The NoMatch() method returns True if the
FindFirst method finds no matching records,
and False otherwise.

Since strField contains the name of a valid
Field object (Title) in the Fields collection,
this notation returns the value of Title .

Tutorial exercises14. Data Access Objects

NextHome Previous 14 o f 22

• Square brackets [] — Square brackets are not
a universally defined programming construct like
round brackets. As such, square brackets have a
particular meaning in Access/VBA and this
meaning is specific to Microsoft products. Simply
put, square brackets are used to signify the name
of a field, table, or other object in the DAO hierar-
chy—they have no other meaning. Square brack-
ets are mandatory when the object names
contain spaces, but optional otherwise. For
example, [Forms]![frmCourses]![Dept-

Code] is identical to Forms!frm-

Courses!DeptCode .
• Quotation marks “ ” — Double quotation marks

are used to distinguish literal strings from names
of variables, fields, etc. For example,
x = “COMM” means that the variable x is equal
to the string of characters COMM. In contrast,

x = COMM means that the variable x is equal to
the value of the variable COMM.

• Single quotation marks ‘ ’ — Single quotation
marks have only one purpose: to replace normal
quotation marks when two sets of quotation
marks are nested. For example, the expression
x = “[ProductID] = ‘123’” means that the
variable x is equal to the string ProductID =
“123”. In other words, when the expression is
evaluated, the single quotes are replaced with
double quotes. If you attempt to nest two sets of
double quotation marks (e.g., x = “[Produc-

tID] = “123””) the meaning is ambiguous
and Access returns an error.

• The Ampersand & — The ampersand is the con-
catenation operator in Access/VBA and is unique
to Microsoft products. The concatenation opera-
tor joins two strings of text together into one
string of text. For example,

Tutorial exercises14. Data Access Objects

NextHome Previous 15 o f 22

x = “one” & “_two” means that the variable
x is equal to the string one_two.

If you understand these constructs at this point, then
understanding the DLookUp() function is just a mat-
ter of putting the pieces together one by one.

14.3.5.1 Using DLookUp() in queries

The DLookUp() function is extremely useful for per-
forming lookups when no relationship exists between
the tables of interest. In this section, you are going to
use the DLookUp() function to lookup the course
name associated with each section in the Sections
table. Although this can be done much easier using a
join query, this exercise illustrates the use of vari-
ables in function calls.

• Create a new query called qryLookUpTest
based on the Sections table.

• Project the DeptCode , CrsNum, and Section
fields.

• Create a calculated field called Title using the
following expression (see Figure 14.5):

Title: DLookUp(“Title”, “Courses”,
“DeptCode = ‘”& [DeptCode] & “’ AND
CrsNum = ‘” & [CrsNum] & “’”)

14.3.5.2 Understanding the WHERE clause

The first two parameters of the DLookUp() are
straightforward: they give the name of the field and
the table containing the information of interest. How-
ever, the third argument (i.e., the WHERE clause) is
more complex and requires closer examination.

At its core, this WHERE clause is similar to the one
you created in Section 5.3.2 in that it contains two
criteria. However, there are two important differ-
ences:

1. Since it is a DLookUp() parameter, the entire
clause must be enclosed within quotation marks.
This means single and double quotes-within-
quotes must be used.

Tutorial exercises14. Data Access Objects

NextHome Previous 16 o f 22

FIGURE 14.5: Create a query that uses DLookUp() .

Create a query based on the Sections
table only (do not include Courses).� Use the DLookUp() function to get the

correct course title for each section.�

Discussion14. Data Access Objects

NextHome Previous 17 o f 22

2. It contains variable (as opposed to literal) criteria.
For example, [DeptCode] is used instead of
“COMM”. This makes the value returned by the
function call dependent on the current value of
the DeptCode field.

In order to get a better feel for syntax of the function
call, do the following exercises (see Figure 14.6):

Switch to the debug window and define two string
variables (see Section 12.3.1 for more information
on using the debug window):

strDeptCode = “COMM”

strCrsNum = “351”

These two variables will take the place the field val-
ues while you are in the debug window.

• Write the WHERE clause you require without the
variables first. This provides you with a template
for inserting the variables.

• Assign the WHERE clause to a string variable
called strWhere (this makes it easier to test).

• Use strWhere in a DLookUp() call.

14.4 Discussion

14.4.1 VBA versus SQL
The PrintRecords procedure you created in
Section 14.3.3 is interesting since it does essentially
the same thing as a select query: it displays a set of
records.

You could extend the functionality of the Print-

Records subroutine by adding an argument and an
IF-THEN condition. For example:

Sub PrintRecords(strDeptCode as
String)

Do Until rsCourses.EOF

If rsCourses!DeptCode = strDeptCode
Then

Debug.Print rsCourses!DeptCode & “ ”
& rsCourses!CrsNum

Discussion14. Data Access Objects

NextHome Previous 18 o f 22

FIGURE 14.6: Examine the syntax of the WHERE clause.

Create string variables that refer to valid
values of DeptCode and CrsNum.�

Use the variables in the WHERE
clause and assign the expression to a
string variable called strWhere .

�

When replacing a literal string with a variable, you
have to stop the quotation marks, insert the variable
(with ampersands on either side) and restart the
quotation marks. This procedure is evident when the
literal and variable version are compared to each other.

Write the WHERE clause using literal
criteria first to get a sense of what is
required.

�

To save typing, use strWhere as the
third parameter of the DLookUp()
call.

�

Discussion14. Data Access Objects

NextHome Previous 19 o f 22

End If

rsCourses.MoveNext

Loop

rsCourses.Close

End Sub

This subroutine takes a value for DeptCode as an
argument and only prints the courses in that particu-
lar department. It is equivalent to the following SQL
command:

SELECT DeptCode, CourseNum FROM
Courses WHERE DeptCode =
strDeptCode

14.4.2 Procedural versus Declarative
The difference between extracting records with a
query language and extracting records with a pro-
gramming language is that the former approach is
declarative while the latter is procedural .

SQL and QBE are declarative languages because
you (as a programmer) need only tell the computer
what you want done, not how to do it. In contrast,
VBA is a procedural language since you must tell the
computer exactly how to extract the records of inter-
est.

Although procedural languages are, in general, more
flexible than their declarative counterparts, they rely
a great deal on knowledge of the underlying struc-
ture of the data. As a result, procedural languages
tend to be inappropriate for end-user development
(hence the ubiquity of declarative languages such as
SQL in business environments).

Application to the assignment14. Data Access Objects

NextHome Previous 20 o f 22

14.5 Application to the assignment

14.5.1 Using a separate table to store
system parameters

When you calculated the tax for the order in
Section 9.5, you “hard-coded” the tax rate into the
form. If the tax rate changes, you have to go through
all the forms that contain a tax calculation, find the
hard-coded value, and change it. Obviously, a better
approach is to store the tax rate information in a
table and use the value from the table in all form-
based calculations.

Strictly speaking, the tax rate for each product is a
property of the product and should be stored in the
Products table. However, in the wholesaling envi-
ronment used for the assignment, the assumption is
made that all products are taxed at the same rate.

As a result, it is possible to cheat a little bit and cre-
ate a stand-alone table (e.g., SystemVariables)
that contains a single record:

Of course, other system-wide variables could be
contained in this table, but one is enough for our pur-
poses. The important thing about the SystemVari-

ables table is that it has absolutely no relationship
with any other table. As such, you must use a
DLookUp() to access this information.

• Create a table that contains information about the
tax rate.

• Replace the hard-coded tax rate information in
your application with references to the value in
the table (i.e., use a DLookUp() in your tax cal-
culations). Although the SystemVariables
table only contains one record at this point, you

VariableName Value

GST 0.07

Application to the assignment14. Data Access Objects

NextHome Previous 21 o f 22

should use an appropriate WHERE clause to
ensure that the value for GST is returned (if no
WHERE clause is provided, DLookUp() returns
the first value in the table).

The use of a table such as SystemVari-

ables contradicts the principles of relational
database design (we are creating an attribute
without an entity). However, trade-offs
between theoretical elegance and practicality
are common in any development project.

14.5.2 Determining outstanding
backorders

An good example in your assignment of a situation
requiring use of the DLookUp() is determining the
backordered quantity of a particular item for a partic-
ular customer. You need this quantity in order to cal-
culate the number of each item to ship.

The reason you must use a DLookUp() to get this
information is that there is no relationship between
the OrderDetails and BackOrders tables.

Any relationship that you manage to create
between OrderDetails and BackOrders
will be nonsensical and result in a non-updat-
able recordset.

• In the query underlying your OrderDetails
subform, create a calculated field called QtyOn-

BackOrder to determine the number of items on
backorder for each item added to the order. This
calculated field will use the DLookUp() function.

There are two differences between this DLookUp()
and the one you did in Section 14.3.5.1

1. Both of the variables used in the function (e.g.,
CustID and ProductID) are not in the query.
As such, you will have to use a join to bring the

Application to the assignment14. Data Access Objects

NextHome Previous 22 o f 22

missing information into the query.
2. ProductID is a text field and the criteria of text

fields must be enclosed in quotation marks, e.g.:
ProductID = “123”

However, CustID is a numeric field and the crite-
ria for numeric fields is not enclosed in quotations
marks, e.g.:
CustID = 4 .

Not every combination of CustID and Pro-

ductID will have an outstanding backorder.
When a matching records is not found, the
DLookUp() function returns a special value:
Null . The important thing to remember is
that Null plus or minus anything equals
Null . This has implications for your “quantity
to ship” calculation.

• Create a second calculated field in your query to
convert any Null s in the first calculated field to

zero. To do this, use the iif() and IsNull()
functions, e.g.:

QtyOnBackOrderNoNull:
iif(IsNull([QtyOnBackOrder]),0,[Qty
OnBackOrder])

• Use this “clean” version in your calculations and
on your form.

It is possible to combine these two calculated
fields into a one-step calculation, e.g.:
iif(IsNull(DLookUp(…)),0,

DLookUp(…)) .
The problem with this approach is that the
DLookUp() function is called twice: once to
test the conditional part of the immediate if
statement and a second time to provide the
“false” part of the statement. If the Back-

Orders table is very large, this can result in
an unacceptable delay when displaying data
in the form.

© Michael Brydon (brydon@unixg.ubc.ca)
Last update: 25-Aug-1997 NextHome Previous 1 o f 33

Access Tutorial 15: Advanced Tri ggers

15.1 Introduction: Pulling it all
together

In this tutorial, you will bring together several of the
skills you have learned in previous tutorials to imple-
ment some sophisticated triggers.

15.2 Learning objectives
� How do I run VBA code using a macro?

� How do I use the value in one field to
automatically suggest a value for a different
field?

� How do I change the table or query a form is
bound to once the form is already created?

� What is the After Update event? How is it
used?

� How do I provide a search capability for my
forms?

� How do I create an unbound combo box?

� Can I implement the search capability using
Visual Basic?

15.3 Tutorial exercises

15.3.1 Using a macro to run VBA code
There a some things that cannot be done using the
Access macro language. If the feature you wish to
implement is critical to your application, then you
must implement it using VBA. However, since it is
possible to call a VBA function from within a macro,
you do not have to abandon the macro language
completely.

In this section, you are going to execute the Param-

eterTest subroutine you created in Section 12.3.6
from within a macro. Since the RunCode action of
the Access macro language can only be used to exe-

Tutorial exercises15. Advanced Tri ggers

NextHome Previous 2 o f 33

cute functions (not subroutines) you must do one of
two things before you create the macro:

1. Convert ParameterTest to a function — you do
this simply by changing the Sub at the start of the
procedure to Function .

2. Create a new function that executes Parame-

terTest and call the function from the macro.

15.3.1.1 Creatin g a wrapper

Since the second alternative is slightly more interest-
ing, it is the one we will use.

• Open your basTesting module from
Tutorial 12.

• Create a new function called ParameterTest-

Wrapper defined as follows:

Function
ParameterTestWrapper(intStart As
Integer, intStop As Integer) As
Integer

'this function calls the
ParameterTest subroutine

ParameterTest intStart, intStop

ParameterTestWrapper = True
'return a value

End Function

• Call the function, as shown in Figure 15.1.

Note that the return value of the function is
declared as an integer, but the actual assign-
ment statement is ParameterTestWrap-

per = True . This is because in Access/
VBA, the constants True and False are
defined as integers (-1 and 0 respectively).

15.3.1.2 Usin g the RunCode action
• Leave the module open (you may have to resize

and/or move the debug window) and create a
new macro called mcrRunCodeTest .

Tutorial exercises15. Advanced Triggers

NextHome Previous 3 o f 33

FIGURE 15.1: Create a function that calls the ParameterTest subroutine.

Create a function to call
the ParameterTest
subroutine.

�

Since ParameterTest
does not return a value, its
arguments are not in
brackets.

Use the Print statement to
invoke the function (do not forget
the parameters).

�

The return value of
ParameterTestWrapper()
is True, so this is printed when
the function ends.

Tutorial exercises15. Advanced Triggers

NextHome Previous 4 o f 33

• Add the RunCode action and use the expression
builder to select the correct function to execute,
as shown in Figure 15.2.

The expression builder includes two parame-
ter place holders (<<intStart>> and
<<intStop>>) in the function name. These
are to remind you that you must pass two
parameters to the ParameterTestWrap-

per() function. If you leave the place holders
where they are, the macro will fail because
Access has not idea what <<intStart>>
and <<intStop>> refer to.

• Replace the parameter place holders with two
numeric parameters (e.g. 3 and 6). Note that in
general, the parameters could be field names or
any other references to Access objects contain-
ing (in this case) integers.

• Select Run > Start to execute the macro as
shown in Figure 15.3.

15.3.2 Using activity information to
determine the number of credits

In this section, you will create triggers attached to the
After Update event of bound controls.

15.3.2.1 Scenario

Assume that each type of course activity is generally
associated with a specific number of credits, as
shown below:

Activity Credits

lecture 3.0

lab 3.0

tutorial 1.0

seminar 6.0

Tutorial exercises15. Advanced Triggers

NextHome Previous 5 o f 33

FIGURE 15.2: Use the expression builder to select the function to execute.

Add a RunCode
action to the macro.�

Use the expression builder to drill
down to the user-defined functions in
your database file.

�

Note the <<intStart>> and
<<intStop>> parameter place
holders. These must be replaced
with expressions that Access
understands.

Tutorial exercises15. Advanced Triggers

NextHome Previous 6 o f 33

Assume as well that the number of credits for a par-
ticular type of course is not cast in stone. As such,
the numbers given above are merely “default” val-
ues.

You want to use the default credit values when you
create a new course or modify an existing course.
However, the user may override this default if neces-
sary for a particular course. The basic requirement is
illustrated in Figure 15.4.

15.3.2.2 Designing the trigger

Based on the foregoing, the answer to the “what”
question is the following:

1. Look up the default number of credits associated
with the course activity showing in the form’s
Activity field.

2. Copy this number into the Courses.Credits
field.

FIGURE 15.3: Execute the RunCode macro.

Replace the
parameter place
holders.

�

Select Run > Start (or press the ! icon in
the tool bar) to execute the macro.�

Tutorial exercises15. Advanced Triggers

NextHome Previous 7 o f 33

FIGURE 15.4: Inserting a default value into a new record.

Create a new record for a lecture-based
course: COMM 437: Database Technology�

Select “Lecture” from the list of list of
course activities created in Tutorial 8.�

Since this is a new record, the default
value of Credits (like any numeric
field) is zero. You want to use the
information you just specified in the
Activity field to automatically
look up the correct default number of
credits for a lecture course and insert
it in the Credits field.

Create a macro to find the default number
of credits and copy the value it into the
Credits field.

�

Once the Activity field is updated, the
macro executes. The value in the
Credits field can be changed by the
user.

�

Tutorial exercises15. Advanced Triggers

NextHome Previous 8 o f 33

There are several possible answers to the “when”
question (although some are better than others). For
example:

1. When the user enters the Credits field (the On
Enter event for Credits) — The problem with
this choice is that the user could modify the
course’s activity without moving the focus to the
Activity field. In such a case, the trigger would
not execute.

2. When the user changes the Activity field (the
After Update event for Activity) — This choice
guarantees that whenever the value of Activ-

ity is changed, the default value will be copied
into the Credits field. As such, it is a better
choice.

15.3.2.3 Preliminary activities
• Modify the Activities table to include a single-

precision numeric field called Credits . Add the
values shown in the table in Section 15.3.2.1.

• Ensure that you have a courses form (e.g., frm-

Courses) and that the form has a combo box for
the Activity field. You may wish to order the
fields such that Activity precedes Credits in
the tab order (as shown in Figure 15.4).

If your move fields around, remember to
adjust the tab order accordingly (recall
Section 8.3.4).

15.3.2.4 Looking up the default value

As you discovered in Section 14.3.5, Access has a
DLookUp() function that allows you to go to the
Activities table and find the value of Credits
for a particular value of Activity . A different
approach is to join the Activities table with the
Courses table in a query so that the default value of
credits is always available in the form. This is the
approach we will use here.

Tutorial exercises15. Advanced Triggers

NextHome Previous 9 o f 33

• Ensure you have a relationship (in the main rela-
tionship window) between Courses.Activity
and Activities.Activity .

• Create a new query called qryCoursesAnd-

Credits based on the Courses and Activi-

ties tables (see Figure 15.5).

Notice that you have two credits fields:
Courses.Credits (the actual number of
credits for the course) and Activi-

ties.Credits (the “default” or “suggested”
number of credits based on the value of
Activity). Access uses the <table

name>.<field name> notation whenever a
query contains more than one field with the
same name.

Since you already have forms based on the
Courses table that expect a field called Credits
(rather than one called Courses.Credits), it is a

FIGURE 15.5: Use a join to make the default
value available.

Tutorial exercises15. Advanced Triggers

NextHome Previous 10 o f 33

good idea to rename the Activities.Credits
field in the query. You do this by creating a calculated
field.

• Rename Activities.Credits to Default-

Credits as shown in Figure 15.6. Note that this
eliminates the need for the <table

name>.<field name> notation.

15.3.2.5 Changing the Record Source of the
form

Rather than create a new form based on the qry-

CoursesAndCredits query, you can modify the
Record Source property of the existing frmCourses
form so it is bound to the query rather than the
Courses table.

• Bring up the property sheet for the frmCourses
form and change the Record Source property to
qryCoursesAndCredits as shown in
Figure 15.7.

FIGURE 15.6: Rename one of the Credits fields.

Rename Credits form the Activities
table to DefaultCredits .�

Tutorial exercises15. Advanced Triggers

NextHome Previous 11 o f 33

The advantage of using a join query in this manner is
that DefaultCredits is now available for use
within the form and within any macros or VBA mod-
ules that run when the form is open.

15.3.2.6 Creating the SetValue macro

The SetValue macro you require here is extremely
simple once you have DefaultCredits available
within the scope of the form.

• Create the mcrCourses.SetCredits macro
as shown in Figure 15.8.

15.3.2.7 Attaching a procedure to the After
Update event

The On Click event of a button is fairly simple to
understand: the event occurs when the button is
clicked. The events associated with non-button
objects operate in exactly the same way. For exam-
ple, the After Update event for controls (text box,
combo box, check box, etc.) occurs when the value

FIGURE 15.7: Change the Record Source
property of an existing form.

Bring up the form’s property list and
change its Record Source property.�

The field list now contains all
the fields in the new query.

Tutorial exercises15. Advanced Triggers

NextHome Previous 12 o f 33

of the control is changed by the user. As a result, the
After Update event is often used to trigger data verifi-
cation procedures and “auto-fill” procedures like the
one you are creating here.

• Attach the mcrCourses.SetCredits macro to
the After Update event of the Activity field.

• Verify that the trigger works properly.

15.3.3 Use an unbound combo box to
automate search

As mentioned in Tutorial 8, a combo box has no
intrinsic search capability. However, the idea of scan-
ning a short list of key values, selecting a value, and
having all the information associated with that record
pop on to the screen is so basic that in Access ver-
sion 7.0 and above, this capability is included in the
combo box wizard. In this tutorial, we will look at a
couple of different means of creating a combo boxes
for search from scratch.

15.3.3.1 Manual search in Access

To see how Access searches for records, do the fol-
lowing:

• Open your frmDepartments form.

FIGURE 15.8: Create the SetValue macro.

Create a macro group called mcrCourses
and a named macro called SetCredits .�

You can use the builder to set the arguments
or simply type in the names of the fields.�

Tutorial exercises15. Advanced Triggers

NextHome Previous 13 o f 33

• Move to the field on which you want to search
(e.g., DeptCode);

• Select Edit > Find (or press Control-F);
• Fill out the search dialog box as shown in

Figure 15.9.

In the dialog box, you specify what to search for
(usually a key value) and specify how Access should
conduct its search. When you press Find First,
Access finds the first record that matches your
search value and makes it the current record (note
that if you are searching on a key field, the first
matching record is also the only matching record).

15.3.3.2 Preliminaries

To make this more interesting, assume that the frm-

Departments form is for viewing editing existing
departmental information (rather than adding new
departments). To enforce this limitation, do the fol-
lowing:

• Set the form’s Allow Additions property to No.

• Set the Enabled property of DeptCode to No (the
user should never be able to change the key val-
ues of existing records).

15.3.3.3 Creating the unbound combo box

The key thing to remember about the combo box
used to specify the search criterion is that it has
nothing to do with the other fields or the underlying
table. As such, it should be unbound.

• Create an unbound combo box in the form
header, as shown in Figure 15.10.

• Change the Name property of the combo box to
cboDeptCode .

• The resulting combo box should resemble that
shown in Figure 15.11.

When you create an unbound combo box,
Access gives it a default name (e.g.,
Combo5). You should do is change this to
something more descriptive (e.g., cboDept-

Tutorial exercises15. Advanced Triggers

NextHome Previous 14 o f 33

FIGURE 15.9: Search for a record using the “find” dialog box.

Move the cursor to
the field you wish to
search and invoke
the search box
using Control-F.

�

Enter the value you wish to find
and set the other search
parameters as required.

�

Press Find First to move to the first
(or only) record that matches the
search condition.

�

Limit the search to the current
field (i.e., the field with the
focus when the search box was
opened).

�

Tutorial exercises15. Advanced Triggers

NextHome Previous 15 o f 33

FIGURE 15.10: Create an unbound combo box.

Drag the separator for the detail
down to make room in the form
header

�

Create an unbound combo box by
selecting the combo box tool and
clicking in the header area.

�

Use the wizard in the usual way
to get a list of valid DeptCode
values and descriptions. The
bound column for the combo box
should be DeptCode .

�

Since the combo box is unbound,
its value has to be stored for later
use rather than stored in a field.

�

Tutorial exercises15. Advanced Triggers

NextHome Previous 16 o f 33

Code). The advantage of the prefix cbo is
that it allows you to differentiate between the
bound field DeptCode and the unbound
combo box.

15.3.3.4 Automating the search procedure
using a macro

When we implement search functionality with a
combo box, only two things are different from the
manual search in Figure 15.9:

1. the search dialog box does not show up, and
2. the user selects the search value from the combo

box rather than typing it in.

The basic sequence of actions, however, remains
the same. As a result, the answer to the “what” ques-
tion is the following:

1. Move the cursor to the DeptCode field (this
allows the “Search Only Current Field” option to
be used, thereby drastically cutting the search
time).

2. Invoke the search feature using the current value
of cboDeptCode as the search value.

FIGURE 15.11: An unbound combo box.

Although the DeptCode column has been
hidden, it is the “bound” column. As a result,
the value of the combo box as it appears here
is “COMM”, not “Commerce and ...”

Tutorial exercises15. Advanced Triggers

NextHome Previous 17 o f 33

3. Move the cursor back to cboDeptCode or some
other field.

The only problem with this procedure is that the
DeptCode text box is disabled. As a result, you must
include an extra step at the beginning of the macro
to set its Enabled property to Yes and another at the
end of the macro to return it to its original state.

• Create a new macro called mcrSearch.Find-

Department .
• Use the SetValue action to set the Dept-

Code.Enabled property to Yes. This can be
done using the expression builder, as shown in
Figure 15.12.

• Use the GotoControl action to move the cursor
to the DeptCode text box. Note that this action
will fail if the destination control is disabled.

• Use the FindRecord action to implement the
search as shown in Figure 15.13.

FIGURE 15.13: Fill in the arguments for the
FindRecord action.

Create a named macro called
mcrSearch.FindDepartment .�

Enter the action arguments. Do not forget the
equals sign before the name of the combo box.�

Since Value is
the default
property, its use
is optional.

Tutorial exercises15. Advanced Triggers

NextHome Previous 18 o f 33

FIGURE 15.12: Use the builder to specify the name of the property to set.

To set the Item argument, use the
expression builder to drill down
to the correct form.

�

 Select the unbound combo box
(cboDeptCode) from the middle
pane. A list of properties for the
selected object is displayed in the
pane on the right.

�

The middle pane shows all the
objects on the form including
labels and buttons (hence the
need for a good naming
convention).

Tutorial exercises15. Advanced Triggers

NextHome Previous 19 o f 33

Access interprets any text in the Find What
argument as a literal string (i.e., quotation
marks would not be required to find COMM). To
use an expression (including the contents of a
control) in the Find What argument, you must
precede it with an equals sign (e.g.,
=[cboDeptCode] .

• You cannot disable a control if it has the focus.
Therefore, include another GotoControl action
to move the cursor to cboDeptCode before set-
ting DeptCode.Enabled = No .

• Attach the macro mcrSearch.FindDepart-

ment to the After Update event of the cboDept-

Code combo box.
• Test the search feature.

15.3.4 Using Visual Basic code instead of
a macro

Instead of attaching a macro to the After Update
event, you can attach a VBA procedure. The VBA
procedure is much shorter than its macro counter-
part:

1. a copy (clone) of the recordset underlying the
form is created,

2. the FindFirst method of this recordset is used
to find the record of interest.

3. the “bookmark” property of the clone is used to
move to the corresponding bookmark for the
form.

To create a VBA search procedure, do the following:
• Change the After Update event of cboDeptCode

to “Event Procedure”.
• Press the builder () to create a VBA subrou-

tine.

Application to the assignment15. Advanced Triggers

NextHome Previous 20 o f 33

• Enter the two lines of code below, as shown in
Figure 15.14.

Me.RecordsetClone.FindFirst
“DeptCode = ‘” & cboDeptCode & “'”

Me.Bookmark =
Me.RecordsetClone.Bookmark

This program consists of a number of interesting ele-
ments:

• The property Me refers to the current form. You
can use the form's actual name, but Me is much
faster to type.

• A form’s RecordsetClone property provides a
means of referencing a copy of the form's under-
lying recordset.

• The FindFirst method is straightforward. It
acts, in this case, on the clone.

• Every recordset has a bookmark property that
uniquely identifies each record. A bookmark is
like a “record number”, except that it is stored as

a non-human-readable data type and therefore is
not of much use unless it is used in the manner
shown here. Setting the Bookmark property of a
record makes the record with that bookmark the
current record. In the example above, the book-
mark of the records underlying the form is set to
equal the bookmark of the clone. Since the clone
had its bookmark set by the search procedure,
this is equivalent to searching the recordset
underlying the form.

15.4 Application to the assignment

15.4.1 Triggers to help the user
• Create a trigger on your order form that sets the

actual selling price of a product to its default
price. This allows the user to accept the default
price or enter a new price for that particular trans-
action (e.g., the item could be damaged). You will

Application to the assignment15. Advanced Triggers

NextHome Previous 21 o f 33

FIGURE 15.14: Implement the search feature using a short VBA procedure.

Change the After Update event to
reference an event procedure.�

Press the builder button to invoke the VBA
editor.�

Access automatically names the
subroutine. Enter the two lines of code.�

Application to the assignment15. Advanced Triggers

NextHome Previous 22 o f 33

have to think carefully about which event to
attach this macro to.

• Create a trigger on your order form that calcu-
lates a suggested quantity to ship and copies this
value into the quantity to ship field. The sug-
gested value must take into account the amount
ordered by the customer, any outstanding backo-
rders for that item by that customer, and the cur-
rent quantity on hand (you cannot ship what you
do not have). The user should be able to override
this suggested value. (Hint: use the MinValue()
function you created in Section 12.5.)

• Provide you customer and products forms with
search capability.

15.4.2 Updating the BackOrders table
Once a sales order is entered into the order form, it
is a simple matter to calculate the amount of each
product that should be backordered (you did this in

Section 10.4). The problem is updating the Back-

Orders table itself because two different situations
have to be considered:

1. A record for the particular customer-product
combination exists in the BackOrders table --
If a backorder record exists for a particular cus-
tomer and a particular product, the quantity field
of the record can be added-to or subtracted-from
as backorders are created and filled.

2. A customer-product record does not exist in
the BackOrders table -- If the particular cus-
tomer has never had a backorder for the product
in question, then there is no record in the Back-

Orders table to update. If you attempt to update
a nonexistent record, you will get an error.

What is required, therefore, is a means of determin-
ing whether a record already exists for a particular
customer-product combination. If a record does
exist, then it has to be updated; if a record does not

Application to the assignment15. Advanced Triggers

NextHome Previous 23 o f 33

exist, then one has to be created. This is simple
enough to talk about, but more difficult to implement
in VBA. As a result, you are being provided with a
shortcut function called UpdateBackOrders()

that implements this logic.

The requirements for using the UpdateBackO-

rders() function are outlined in the following sec-
tions:

15.4.2.1 Create the pqryItemsToBackOrder
query

If you have not already done so, create the pqry-

ItemsToBackOrder query described in
Section 10.4. The UpdateBackOrders() proce-
dure sets the parameter for the query and then cre-
ates a recordset based on the results.

If you did not use the field names OrderID ,
and ProductID in your tables, you must use
the calculated field syntax to rename them

(see Section 15.3.2.4 to review renaming
fields in queries).

Note that if the backordered quantity is positive,
items are backordered. If the backordered quantity is
negative, backorders are being filled. If the backor-
dered quantity is zero, no change is required and
these records should no be included in the results of
the query.

15.4.2.2 Import the shortcut function

Import the Visual Basic for Applications (VBA) mod-
ule containing the code for the
UpdateBackOrders() function. This module is
contained in an Access database called
BOSC_Vx.mdb that you can download from the
course home page.

• BOSC_V2.mdb is for those running Access ver-
sion 2.0. To import the module, select File >

Application to the assignment15. Advanced Triggers

NextHome Previous 24 o f 33

Import, choose BOSC_V2.mdb, and select Mod-
ule as the object type to import.

• BOSC_V7.mdb is for those running Access ver-
sion 7.0 or higher. To import the module, select
File > Get External Data > Import, choose
BOSC_V7.mdb, and select Module as the object
type to import.

15.4.2.3 Use the function in your application

The general syntax of the function call is:
UpdateBackOrders(OrderID, CustomerID) .

The OrderID and CustomerID are arguments and
they both must be of the type Long Integer. If this
function is called properly, it will update all the backo-
rdered items returned by the parameter query.

15.4.2.4 Modifying the UpdateBackOrders()
function

The UpdateBackOrders() function looks for spe-
cific fields in three tables: BackOrders , Custom-

ers , and Products . If any of your tables or fields
are named differently, an error occurs. To eliminate
these errors, you can do one of two of things:

1. Edit the VBA code. Use the search-and-replace
feature of the module editor to replace all
instances of field names in the supplied proce-
dures with your own field names. This is the rec-
ommended approach, although you need an
adequate understanding of how the code works
in order to know which names to change.

2. Change the field names in your tables (and all
queries and forms that reference these field
names). This approach is not recommended.

15.4.3 Understanding the
UpdateBackOrders() function

The flowchart for the UpdateBackOrders() func-
tion is shown in Figure 15.15. This function repeat-
edly calls a subroutine, BackOrderItem , which

Application to the assignment15. Advanced Triggers

NextHome Previous 25 o f 33

updates or adds the individual items to the BackO-

rders table. The flowchart for the BackOrderItem
subroutine is shown in Figure 15.16.

There are easier and more efficient ways of imple-
menting routines to update the BackOrders table.
Although some amount of VBA code is virtually inev-
itable, a great deal of programming can be elimi-
nated by using parameter queries and action
queries. Since queries run faster than code in
Access, the more code you replace with queries, the
better.

To get full marks for the backorders aspect of
the assignment, you have to create a more
elegant alternative to the shortcut supplied
here.

start

is
the list
empty?

error message

run pqryItemsToBackOrder
 to get list of items to backorder

do until end of list

call BackOrderItems

stop

(CustID,ProductID,Qty)

yes

no

stop

FIGURE 15.15: Flowchart for
UpdateBackOrders() .

Application to the assignment15. Advanced Triggers

NextHome Previous 26 o f 33

start

update Qty

stop

stop

search BackOrders table for
matching CustID & ProductID

found?

check Customer table to
ensure valid CustID

error message stopvalid?

check Products table to
ensure valid ProductID

error message stopvalid?

add new record with
CustID , ProductID & Qty

yes

no

yes

yes

no

no

FIGURE 15.16: Flowchart for the BackOrderItem subroutine.

Application to the assignment15. Advanced Triggers

NextHome Previous 27 o f 33

15.4.4 Annotated source code for the
backorders shortcut module.

In the following sections, the two procedures in the
shortcut module are examined. In each case, the
code for the procedure is presented followed by
comments on specific lines of code.

15.4.4.1 The UpdateBackOrders() function

Function UpdateBackOrders(ByVal
lngOrdID As Long, ByVal lngCustID As
Long)

Set dbCurr = CurrentDb

Dim rsBOItems As Recordset

dbCurr.QueryDefs!pqryItemsToBackOrder.
Parameters!pOrderID = lngOrdID

Set rsBOItems =
dbCurr.QueryDefs!pqryItemsToBackOrder
.OpenRecordset()

If rsBOItems.RecordCount = 0 Then

MsgBox “Back order cannot be processed:
order contains no items”

Exit Sub

End If

Do Until rsBOItems.EOF

Call BackOrderItem(lngCustID,
rsBOItems!ProductID, rsBOItems!Qty)

rsBOItems.MoveNext

Loop

rsBOItems.Close

End Function

15.4.4.2 Explanation of the
UpdateBackOrders() function

Function UpdateBackOrders(ByVal lngOr-

dID As Long, ByVal lngCustID As Long) —
This statement declares the function and its parame-
ters. Each item in the parameter list contains three
elements: ByVal or ByRef (optional), the variable's
name, and the variable's type (optional). The ByVal

Application to the assignment15. Advanced Triggers

NextHome Previous 28 o f 33

keyword simply means that a copy of the variables
value is passed the subroutine, not the variable
itself. As a result, variables passed by value cannot
be changed by the sub-procedure. In contrast, if a
variable is passed by reference (the default), its
value can be changed by the sub-procedure.

Set dbCurr = CurrentDb — Declaring a vari-
able and setting it to be equal to something are dis-
tinct activities. In this case, the variable dbCurr
(which is declared in the declarations section) is set
to point to a database object. Note that the database
object is not created, it already exists.

CurrentDb is a function supported in Access ver-
sion 7.0 and higher that returns a reference to the
current database. In Access version 2.0, this function
does not exist and thus the current database must
be found by starting at the top level object in the
Access DAO hierarchy, as discussed in
Section 14.3.1.

Dim rsBOItems As Recordset — In this decla-
ration statement, a pointer to a Recordset object is
declared. This recordset contains a list of all the
items to add to the BackOrders table.

dbCurr.QueryDefs!pqryItemsToBackOrder

.Parameters!pOrderID = lngOrdID — This
one is a bit tricky: the current database (dbCurr)
contains a collection of objects called QueryDefs
(these are what you create when you use the QBE
query designer). Within the collection of QueryDefs,
there is one called pqryItemsToBackOrder
(which you created in Section 15.4.2.1).

Within every QueryDef, there is a collection of zero
or more Parameters . In this case, there is one called
pOrderID and this sets the value of the parameter
to the value of the variable lngOrderID (which was
passed to the function as a parameter).

Set rsBOItems = dbCurr.QueryDefs!pqry-

ItemsToBackOrder.OpenRecordset() — Here

Application to the assignment15. Advanced Triggers

NextHome Previous 29 o f 33

is another set statement. In this one, the variable
rsBOItems is set to point at a recordset object.
Unlike the current database object above, however,
this recordset does not yet exist and must be created
by running the pqryItemsToBackOrder parame-
ter query.

OpenRecordset is a method that is defined for
objects of type TableDef or QueryDef that creates an
image of the data in the table or query. Since the
query in question is a parameter query, and since the
parameter query is set in the previous statement, the
resulting recordset consists of a list of backordered
items with an order number equal to the value of
pOrderID .

If rsBOItems.RecordCount = 0 Then — The
only thing you need to know at this point about the
RecordCount property of a recordset is that it returns
zero if the recordset is empty.

MsgBox “Back order cannot be processed:

order contains no items” — The MsgBox
statement pops up a standard message box with an
Okay button in the middle.

Exit Sub — If this line is reached, the list contains
no items. As such, there is no need to go any further
in this subroutine.

End If — The syntax for If… Then… Else… state-
ments requires an End If statement at the end of
the conditional code. That is, everything between the
If and the End If executes if the condition is true;
otherwise, the whole block of code is ignored.

Do Until rsBOItems.EOF — The EOF property
of a recordset is set to true when the “end of file” is
encountered.

Call BackOrderItem(lngCustID, rsBOI-

tems!ProductID, rsBOItems!Qty) — A sub-
routine is used to increase the modularity and

Application to the assignment15. Advanced Triggers

NextHome Previous 30 o f 33

readability of this function. Note the way in which the
current values of ProductID and Qty from the
rsBOItems Recordset are accessed.

rsBOItems.MoveNext — MoveNext is a method
defined for recordset objects. If this is forgotten, the
EOF condition will never be reached and an infinite
loop will be created. In VBA, the Escape key is usu-
ally sufficient to stop an infinite loop.

Loop — All Do While /Do Until loops must end
with the Loop statement.

rsBOItems.Close — When you create a new
object (such as a Recordset using the Open-

Recordset method), you should close it before exit-
ing the procedure. Note that you do not close
dbCurr because you did not open it.

End Function — All functions/subroutines need
an End Function /End Sub statement.

15.4.4.3 The BackOrderItem() subroutine

Sub BackOrderItem(ByVal lngCustID As
Long, ByVal strProdID As String, ByVal
intQty As Integer)

Set dbCurr = CurrentDb

Dim strSearch As String

Dim rsBackOrders As Recordset

Set rsBackOrders =
dbCurr.OpenRecordset(“BackOrders”,
dbOpenDynaset)

strSearch = “CustID = “ & lngCustID & “
AND ProductID = '" & strProdID & “'”

rsBackOrders.FindFirst strSearch

If rsBackOrders.NoMatch Then

Dim rsCustomers As Recordset

Set rsCustomers =
dbCurr.OpenRecordset(“Customers”,
dbOpenDynaset)

strSearch = “CustID = “ & lngCustID

rsCustomers.FindFirst strSearch

Application to the assignment15. Advanced Triggers

NextHome Previous 31 o f 33

If rsCustomers.NoMatch Then

MsgBox “An invalid Customer ID number
has been passed to BackOrderItem”

Exit Sub

End If

Dim rsProducts As Recordset

Set rsProducts =
dbCurr.OpenRecordset(“Products”,
dbOpenDynaset)

strSearch = “ProductID = '" & strProdID
& “'”

rsProducts.FindFirst strSearch

If rsProducts.NoMatch Then

MsgBox “An invalid Product ID number
has been passed to BackOrderItem”

Exit Sub

End If

rsBackOrders.AddNew

rsBackOrders!CustID = lngCustID

rsBackOrders!ProductID = strProdID

rsBackOrders!Qty = intQty

rsBackOrders.Update

Else

rsBackOrders.Edit

rsBackOrders!Qty = rsBackOrders!Qty +
intQty

rsBackOrders.Update

End If

End Sub

15.4.4.4 Explanation of the BackOrderItem()
subroutine

Since many aspects of the language are covered in
the previous subroutine, only those that are unique
to this subroutine are explained.

Set rsBackOrders = dbCurr.OpenRecord-

set(“BackOrders”, dbOpenDynaset) — The
OpenRecordset method used here is the one
defined for a Database object. The most important
argument is the source of the records, which can be

Application to the assignment15. Advanced Triggers

NextHome Previous 32 o f 33

a table name, a query name, or an SQL statement.
The dbOpenDynaset argument is a predefined con-
stant that tells Access to open the recordset as a
dynaset. You don't need to know much about this
except that the format of these predefined constants
is different between Access version 2.0 and version
7.0 and higher. In version 2.0, constants are of the
form: DB_OPEN_DYNASET.

strSearch = “CustID = ”& lngCustID & “

AND ProductID = ’” & strProdID & “'” —
A string variable has been used to break the search
process into two steps. First, the search string is
constructed; then the string is used as the parameter
for the FindFirst method. The only tricky part here
is that lngCustID is a long integer and strProdID
is a string. The difference is that the value of str-

ProdID has to be enclosed in quotation marks when
the parameter is passed to the FindFirst method. To

do this, single quotes are used within the search
string.

rsBackOrders.FindFirst strSearch —
FindFirst is a method defined for Recordset
objects that finds the first record that meets the crite-
ria specified in the method's argument. Its argument
is the text string stored in strSearch .

If rsBackOrders.NoMatch Then — The
NoMatch property should always be checked after
searching a record set. Since it is a Boolean variable
(True / False) it can be used without an comparison
operator.

rsBackOrders.AddNew — Before information can
be added to a table, a new blank record must be cre-
ated. The AddNew method creates a new empty
record, makes it the active record, and enables it for
editing.

Application to the assignment15. Advanced Triggers

NextHome Previous 33 o f 33

rsBackOrders!CustID = lngCustID — Note
the syntax for changing a variable’s value. In this
case, the null value of the new empty record is
replaced with the value of a variable passed to the
subroutine.

rsBackOrders.Update — After any changes are
made to a record, the Update method must be
invoked to “commit” the changes. The AddNew /
Edit and Update methods are like bookends
around changes made to records.

rsBackOrders.Edit — The Edit method allows
the values in a record to be changed. Note that these
changes are not saved to the underlying table until
the Update method is used.

