
 G I F (tm)

 Graphics Interchange Format (tm)

 A standard defining a mechanism

 for the storage and transmission

 of raster-based graphics information

 June 15, 1987

 (c) CompuServe Incorporated, 1987

 All rights reserved

 While this document is copyrighted, the information

 contained within is made available for use in computer

 software without royalties, or licensing restrictions.

 GIF and 'Graphics Interchange Format' are trademarks of

 CompuServe, Incorporated.

 an H&R Block Company

 5000 Arlington Centre Blvd.

 Columbus, Ohio 43220

 (614) 457-8600

 Page 2

 Graphics Interchange Format (GIF) Specification

 Table of Contents

 INTRODUCTION page 3

 GENERAL FILE FORMAT page 3

 GIF SIGNATURE page 4

 SCREEN DESCRIPTOR page 4

 GLOBAL COLOR MAP page 5

 IMAGE DESCRIPTOR page 6

 LOCAL COLOR MAP page 7

 RASTER DATA page 7

29/09/2009 ftp://ftp.ncsa.uiuc.edu/misc/file.form…

ftp.ncsa.uiuc.edu/misc/…/gif87a.doc 1/19

 GIF TERMINATOR page 8

 GIF EXTENSION BLOCKS page 8

 APPENDIX A - GLOSSARY page 9

 APPENDIX B - INTERACTIVE SEQUENCES page 10

 APPENDIX C - IMAGE PACKAGING & COMPRESSION . . page 12

 APPENDIX D - MULTIPLE IMAGE PROCESSING page 15

Graphics Interchange Format (GIF) Page 3

Specification

INTRODUCTION

 'GIF' (tm) is CompuServe's standard for defining generalized color

 raster images. This 'Graphics Interchange Format' (tm) allows

 high-quality, high-resolution graphics to be displayed on a variety of

 graphics hardware and is intended as an exchange and display mechanism

 for graphics images. The image format described in this document is

 designed to support current and future image technology and will in

 addition serve as a basis for future CompuServe graphics products.

 The main focus of this document is to provide the technical

 information necessary for a programmer to implement GIF encoders and

 decoders. As such, some assumptions are made as to terminology relavent

 to graphics and programming in general.

 The first section of this document describes the GIF data format

 and its components and applies to all GIF decoders, either as standalone

 programs or as part of a communications package. Appendix B is a

 section relavent to decoders that are part of a communications software

 package and describes the protocol requirements for entering and exiting

 GIF mode, and responding to host interrogations. A glossary in Appendix

 A defines some of the terminology used in this document. Appendix C

 gives a detailed explanation of how the graphics image itself is

 packaged as a series of data bytes.

29/09/2009 ftp://ftp.ncsa.uiuc.edu/misc/file.form…

ftp.ncsa.uiuc.edu/misc/…/gif87a.doc 2/19

 Graphics Interchange Format Data Definition

 GENERAL FILE FORMAT

 +-----------------------+

 | +-------------------+ |

 | | GIF Signature | |

 | +-------------------+ |

 | +-------------------+ |

 | | Screen Descriptor | |

 | +-------------------+ |

 | +-------------------+ |

 | | Global Color Map | |

 | +-------------------+ |

 | +-------------------+ | ---+

 | | Image Descriptor | | |

 | +-------------------+ | |

 | +-------------------+ | |

 | | Local Color Map | | |- Repeated 1 to n times

 | +-------------------+ | |

 | +-------------------+ | |

 | | Raster Data | | |

 | +-------------------+ | ---+

 |- GIF Terminator -|

 +-----------------------+

Graphics Interchange Format (GIF) Page 4

Specification

 GIF SIGNATURE

 The following GIF Signature identifies the data following as a

29/09/2009 ftp://ftp.ncsa.uiuc.edu/misc/file.form…

ftp.ncsa.uiuc.edu/misc/…/gif87a.doc 3/19

 valid GIF image stream. It consists of the following six characters:

 G I F 8 7 a

 The last three characters '87a' may be viewed as a version number

 for this particular GIF definition and will be used in general as a

 reference in documents regarding GIF that address any version

 dependencies.

 SCREEN DESCRIPTOR

 The Screen Descriptor describes the overall parameters for all GIF

 images following. It defines the overall dimensions of the image space

 or logical screen required, the existance of color mapping information,

 background screen color, and color depth information. This information

 is stored in a series of 8-bit bytes as described below.

 bits

 7 6 5 4 3 2 1 0 Byte #

 +---------------+

 | | 1

 +-Screen Width -+ Raster width in pixels (LSB first)

 | | 2

 +---------------+

 | | 3

 +-Screen Height-+ Raster height in pixels (LSB first)

 | | 4

 +-+-----+-+-----+ M = 1, Global color map follows Descriptor

 |M| cr |0|pixel| 5 cr+1 = # bits of color resolution

 +-+-----+-+-----+ pixel+1 = # bits/pixel in image

 | background | 6 background=Color index of screen background

 +---------------+ (color is defined from the Global color

 |0 0 0 0 0 0 0 0| 7 map or default map if none specified)

 +---------------+

29/09/2009 ftp://ftp.ncsa.uiuc.edu/misc/file.form…

ftp.ncsa.uiuc.edu/misc/…/gif87a.doc 4/19

 The logical screen width and height can both be larger than the

 physical display. How images larger than the physical display are

 handled is implementation dependent and can take advantage of hardware

 characteristics (e.g. Macintosh scrolling windows). Otherwise images

 can be clipped to the edges of the display.

 The value of 'pixel' also defines the maximum number of colors

 within an image. The range of values for 'pixel' is 0 to 7 which

 represents 1 to 8 bits. This translates to a range of 2 (B & W) to 256

 colors. Bit 3 of word 5 is reserved for future definition and must be

 zero.

Graphics Interchange Format (GIF) Page 5

Specification

 GLOBAL COLOR MAP

 The Global Color Map is optional but recommended for images where

 accurate color rendition is desired. The existence of this color map is

 indicated in the 'M' field of byte 5 of the Screen Descriptor. A color

 map can also be associated with each image in a GIF file as described

 later. However this global map will normally be used because of

 hardware restrictions in equipment available today. In the individual

 Image Descriptors the 'M' flag will normally be zero. If the Global

 Color Map is present, it's definition immediately follows the Screen

 Descriptor. The number of color map entries following a Screen

 Descriptor is equal to 2**(# bits per pixel), where each entry consists

 of three byte values representing the relative intensities of red, green

 and blue respectively. The structure of the Color Map block is:

 bits

 7 6 5 4 3 2 1 0 Byte #

 +---------------+

 | red intensity | 1 Red value for color index 0

29/09/2009 ftp://ftp.ncsa.uiuc.edu/misc/file.form…

ftp.ncsa.uiuc.edu/misc/…/gif87a.doc 5/19

 +---------------+

 |green intensity| 2 Green value for color index 0

 +---------------+

 | blue intensity| 3 Blue value for color index 0

 +---------------+

 | red intensity | 4 Red value for color index 1

 +---------------+

 |green intensity| 5 Green value for color index 1

 +---------------+

 | blue intensity| 6 Blue value for color index 1

 +---------------+

 : : (Continues for remaining colors)

 Each image pixel value received will be displayed according to its

 closest match with an available color of the display based on this color

 map. The color components represent a fractional intensity value from

 none (0) to full (255). White would be represented as (255,255,255),

 black as (0,0,0) and medium yellow as (180,180,0). For display, if the

 device supports fewer than 8 bits per color component, the higher order

 bits of each component are used. In the creation of a GIF color map

 entry with hardware supporting fewer than 8 bits per component, the

 component values for the hardware should be converted to the 8-bit

 format with the following calculation:

 <map_value> = <component_value>*255/(2**<nbits> -1)

 This assures accurate translation of colors for all displays. In

 the cases of creating GIF images from hardware without color palette

 capability, a fixed palette should be created based on the available

 display colors for that hardware. If no Global Color Map is indicated,

 a default color map is generated internally which maps each possible

 incoming color index to the same hardware color index modulo <n> where

29/09/2009 ftp://ftp.ncsa.uiuc.edu/misc/file.form…

ftp.ncsa.uiuc.edu/misc/…/gif87a.doc 6/19

 <n> is the number of available hardware colors.

Graphics Interchange Format (GIF) Page 6

Specification

 IMAGE DESCRIPTOR

 The Image Descriptor defines the actual placement and extents of

 the following image within the space defined in the Screen Descriptor.

 Also defined are flags to indicate the presence of a local color lookup

 map, and to define the pixel display sequence. Each Image Descriptor is

 introduced by an image separator character. The role of the Image

 Separator is simply to provide a synchronization character to introduce

 an Image Descriptor. This is desirable if a GIF file happens to contain

 more than one image. This character is defined as 0x2C hex or ','

 (comma). When this character is encountered between images, the Image

 Descriptor will follow immediately.

 Any characters encountered between the end of a previous image and

 the image separator character are to be ignored. This allows future GIF

 enhancements to be present in newer image formats and yet ignored safely

 by older software decoders.

 bits

 7 6 5 4 3 2 1 0 Byte #

 +---------------+

 |0 0 1 0 1 1 0 0| 1 ',' - Image separator character

 +---------------+

 | | 2 Start of image in pixels from the

 +- Image Left -+ left side of the screen (LSB first)

 | | 3

 +---------------+

 | | 4

 +- Image Top -+ Start of image in pixels from the

29/09/2009 ftp://ftp.ncsa.uiuc.edu/misc/file.form…

ftp.ncsa.uiuc.edu/misc/…/gif87a.doc 7/19

 | | 5 top of the screen (LSB first)

 +---------------+

 | | 6

 +- Image Width -+ Width of the image in pixels (LSB first)

 | | 7

 +---------------+

 | | 8

 +- Image Height-+ Height of the image in pixels (LSB first)

 | | 9

 +-+-+-+-+-+-----+ M=0 - Use global color map, ignore 'pixel'

 |M|I|0|0|0|pixel| 10 M=1 - Local color map follows, use 'pixel'

 +-+-+-+-+-+-----+ I=0 - Image formatted in Sequential order

 I=1 - Image formatted in Interlaced order

 pixel+1 - # bits per pixel for this image

 The specifications for the image position and size must be confined

 to the dimensions defined by the Screen Descriptor. On the other hand

 it is not necessary that the image fill the entire screen defined.

 LOCAL COLOR MAP

Graphics Interchange Format (GIF) Page 7

Specification

 A Local Color Map is optional and defined here for future use. If

 the 'M' bit of byte 10 of the Image Descriptor is set, then a color map

 follows the Image Descriptor that applies only to the following image.

 At the end of the image, the color map will revert to that defined after

 the Screen Descriptor. Note that the 'pixel' field of byte 10 of the

 Image Descriptor is used only if a Local Color Map is indicated. This

 defines the parameters not only for the image pixel size, but determines

 the number of color map entries that follow. The bits per pixel value

 will also revert to the value specified in the Screen Descriptor when

29/09/2009 ftp://ftp.ncsa.uiuc.edu/misc/file.form…

ftp.ncsa.uiuc.edu/misc/…/gif87a.doc 8/19

 processing of the image is complete.

 RASTER DATA

 The format of the actual image is defined as the series of pixel

 color index values that make up the image. The pixels are stored left

 to right sequentially for an image row. By default each image row is

 written sequentially, top to bottom. In the case that the Interlace or

 'I' bit is set in byte 10 of the Image Descriptor then the row order of

 the image display follows a four-pass process in which the image is

 filled in by widely spaced rows. The first pass writes every 8th row,

 starting with the top row of the image window. The second pass writes

 every 8th row starting at the fifth row from the top. The third pass

 writes every 4th row starting at the third row from the top. The fourth

 pass completes the image, writing every other row, starting at the

 second row from the top. A graphic description of this process follows:

 Image

 Row Pass 1 Pass 2 Pass 3 Pass 4 Result

 0 **1a** **1a**

 1 **4a** **4a**

 2 **3a** **3a**

 3 **4b** **4b**

 4 **2a** **2a**

 5 **4c** **4c**

 6 **3b** **3b**

 7 **4d** **4d**

 8 **1b** **1b**

 9 **4e** **4e**

 10 **3c** **3c**

 11 **4f** **4f**

29/09/2009 ftp://ftp.ncsa.uiuc.edu/misc/file.form…

ftp.ncsa.uiuc.edu/misc/…/gif87a.doc 9/19

 12 **2b** **2b**

 . . .

 The image pixel values are processed as a series of color indices

 which map into the existing color map. The resulting color value from

 the map is what is actually displayed. This series of pixel indices,

 the number of which is equal to image-width*image-height pixels, are

 passed to the GIF image data stream one value per pixel, compressed and

 packaged according to a version of the LZW compression algorithm as

 defined in Appendix C.

Graphics Interchange Format (GIF) Page 8

Specification

 GIF TERMINATOR

 In order to provide a synchronization for the termination of a GIF

 image file, a GIF decoder will process the end of GIF mode when the

 character 0x3B hex or ';' is found after an image has been processed.

 By convention the decoding software will pause and wait for an action

 indicating that the user is ready to continue. This may be a carriage

 return entered at the keyboard or a mouse click. For interactive

 applications this user action must be passed on to the host as a

 carriage return character so that the host application can continue.

 The decoding software will then typically leave graphics mode and resume

 any previous process.

 GIF EXTENSION BLOCKS

 To provide for orderly extension of the GIF definition, a mechanism

 for defining the packaging of extensions within a GIF data stream is

 necessary. Specific GIF extensions are to be defined and documented by

 CompuServe in order to provide a controlled enhancement path.

 GIF Extension Blocks are packaged in a manner similar to that used

 by the raster data though not compressed. The basic structure is:

29/09/2009 ftp://ftp.ncsa.uiuc.edu/misc/file.form…

ftp.ncsa.uiuc.edu/misc/…/gif87a.doc 10/19

 7 6 5 4 3 2 1 0 Byte #

 +---------------+

 |0 0 1 0 0 0 0 1| 1 '!' - GIF Extension Block Introducer

 +---------------+

 | function code | 2 Extension function code (0 to 255)

 +---------------+ ---+

 | byte count | |

 +---------------+ |

 : : +-- Repeated as many times as necessary

 |func data bytes| |

 : : |

 +---------------+ ---+

 +---------------+

 |0 0 0 0 0 0 0 0| zero byte count (terminates block)

 +---------------+

 A GIF Extension Block may immediately preceed any Image Descriptor

 or occur before the GIF Terminator.

 All GIF decoders must be able to recognize the existence of GIF

 Extension Blocks and read past them if unable to process the function

 code. This ensures that older decoders will be able to process extended

 GIF image files in the future, though without the additional

 functionality.

Graphics Interchange Format (GIF) Page 9

Appendix A - Glossary

 GLOSSARY

Pixel - The smallest picture element of a graphics image. This usually

 corresponds to a single dot on a graphics screen. Image resolution is

 typically given in units of pixels. For example a fairly standard

29/09/2009 ftp://ftp.ncsa.uiuc.edu/misc/file.form…

ftp.ncsa.uiuc.edu/misc/…/gif87a.doc 11/19

 graphics screen format is one 320 pixels across and 200 pixels high.

 Each pixel can appear as one of several colors depending on the

 capabilities of the graphics hardware.

Raster - A horizontal row of pixels representing one line of an image. A

 typical method of working with images since most hardware is oriented to

 work most efficiently in this manner.

LSB - Least Significant Byte. Refers to a convention for two byte numeric

 values in which the less significant byte of the value preceeds the more

 significant byte. This convention is typical on many microcomputers.

Color Map - The list of definitions of each color used in a GIF image.

 These desired colors are converted to available colors through a table

 which is derived by assigning an incoming color index (from the image)

 to an output color index (of the hardware). While the color map

 definitons are specified in a GIF image, the output pixel colors will

 vary based on the hardware used and its ability to match the defined

 color.

Interlace - The method of displaying a GIF image in which multiple passes

 are made, outputting raster lines spaced apart to provide a way of

 visualizing the general content of an entire image before all of the

 data has been processed.

B Protocol - A CompuServe-developed error-correcting file transfer protocol

 available in the public domain and implemented in CompuServe VIDTEX

 products. This error checking mechanism will be used in transfers of

 GIF images for interactive applications.

LZW - A sophisticated data compression algorithm based on work done by

 Lempel-Ziv & Welch which has the feature of very efficient one-pass

 encoding and decoding. This allows the image to be decompressed and

 displayed at the same time. The original article from which this

 technique was adapted is:

29/09/2009 ftp://ftp.ncsa.uiuc.edu/misc/file.form…

ftp.ncsa.uiuc.edu/misc/…/gif87a.doc 12/19

 Terry A. Welch, "A Technique for High Performance Data

 Compression", IEEE Computer, vol 17 no 6 (June 1984)

 This basic algorithm is also used in the public domain ARC file

 compression utilities. The CompuServe adaptation of LZW for GIF is

 described in Appendix C.

Graphics Interchange Format (GIF) Page 10

Appendix B - Interactive Sequences

 GIF Sequence Exchanges for an Interactive Environment

 The following sequences are defined for use in mediating control

 between a GIF sender and GIF receiver over an interactive communications

 line. These sequences do not apply to applications that involve

 downloading of static GIF files and are not considered part of a GIF

 file.

 GIF CAPABILITIES ENQUIRY

 The GCE sequence is issued from a host and requests an interactive

 GIF decoder to return a response message that defines the graphics

 parameters for the decoder. This involves returning information about

 available screen sizes, number of bits/color supported and the amount of

 color detail supported. The escape sequence for the GCE is defined as:

 ESC [> 0 g (g is lower case, spaces inserted for clarity)

 (0x1B 0x5B 0x3E 0x30 0x67)

 GIF CAPABILITIES RESPONSE

 The GIF Capabilities Response message is returned by an interactive

 GIF decoder and defines the decoder's display capabilities for all

 graphics modes that are supported by the software. Note that this can

 also include graphics printers as well as a monitor screen. The general

 format of this message is:

 #version;protocol{;dev, width, height, color-bits, color-res}... <CR>

 '#' - GCR identifier character (Number Sign)

29/09/2009 ftp://ftp.ncsa.uiuc.edu/misc/file.form…

ftp.ncsa.uiuc.edu/misc/…/gif87a.doc 13/19

 version - GIF format version number; initially '87a'

 protocol='0' - No end-to-end protocol supported by decoder

 Transfer as direct 8-bit data stream.

 protocol='1' - Can use an error correction protocol to transfer GIF data

 interactively from the host directly to the display.

 dev = '0' - Screen parameter set follows

 dev = '1' - Printer parameter set follows

 width - Maximum supported display width in pixels

 height - Maximum supported display height in pixels

 color-bits - Number of bits per pixel supported. The number of

 supported colors is therefore 2**color-bits.

 color-res - Number of bits per color component supported in the

 hardware color palette. If color-res is '0' then no

 hardware palette table is available.

 Note that all values in the GCR are returned as ASCII decimal

 numbers and the message is terminated by a Carriage Return character.

Graphics Interchange Format (GIF) Page 11

Appendix B - Interactive Sequences

 The following GCR message describes three standard EGA

 configurations with no printer; the GIF data stream can be processed

 within an error correcting protocol:

 #87a;1 ;0,320,200,4,0 ;0,640,200,2,2 ;0,640,350,4,2<CR>

 ENTER GIF GRAPHICS MODE

 Two sequences are currently defined to invoke an interactive GIF

 decoder into action. The only difference between them is that different

 output media are selected. These sequences are:

 ESC [> 1 g Display GIF image on screen

 (0x1B 0x5B 0x3E 0x31 0x67)

 ESC [> 2 g Display image directly to an attached graphics printer.

29/09/2009 ftp://ftp.ncsa.uiuc.edu/misc/file.form…

ftp.ncsa.uiuc.edu/misc/…/gif87a.doc 14/19

 The image may optionally be displayed on the screen as

 well.

 (0x1B 0x5B 0x3E 0x32 0x67)

 Note that the 'g' character terminating each sequence is in lower

 case.

 INTERACTIVE ENVIRONMENT

 The assumed environment for the transmission of GIF image data from

 an interactive application is a full 8-bit data stream from host to

 micro. All 256 character codes must be transferrable. The establishing

 of an 8-bit data path for communications will normally be taken care of

 by the host application programs. It is however up to the receiving

 communications programs supporting GIF to be able to receive and pass on

 all 256 8-bit codes to the GIF decoder software.

Graphics Interchange Format (GIF) Page 12

Appendix C - Image Packaging & Compression

 The Raster Data stream that represents the actual output image can

 be represented as:

 7 6 5 4 3 2 1 0

 +---------------+

 | code size |

 +---------------+ ---+

 |blok byte count| |

 +---------------+ |

 : : +-- Repeated as many times as necessary

 | data bytes | |

 : : |

 +---------------+ ---+

 +---------------+

29/09/2009 ftp://ftp.ncsa.uiuc.edu/misc/file.form…

ftp.ncsa.uiuc.edu/misc/…/gif87a.doc 15/19

 |0 0 0 0 0 0 0 0| zero byte count (terminates data stream)

 +---------------+

 The conversion of the image from a series of pixel values to a

 transmitted or stored character stream involves several steps. In brief

 these steps are:

 1. Establish the Code Size - Define the number of bits needed to

 represent the actual data.

 2. Compress the Data - Compress the series of image pixels to a series

 of compression codes.

 3. Build a Series of Bytes - Take the set of compression codes and

 convert to a string of 8-bit bytes.

 4. Package the Bytes - Package sets of bytes into blocks preceeded by

 character counts and output.

ESTABLISH CODE SIZE

 The first byte of the GIF Raster Data stream is a value indicating

 the minimum number of bits required to represent the set of actual pixel

 values. Normally this will be the same as the number of color bits.

 Because of some algorithmic constraints however, black & white images

 which have one color bit must be indicated as having a code size of 2.

 This code size value also implies that the compression codes must start

 out one bit longer.

COMPRESSION

 The LZW algorithm converts a series of data values into a series of

 codes which may be raw values or a code designating a series of values.

 Using text characters as an analogy, the output code consists of a

 character or a code representing a string of characters.

Graphics Interchange Format (GIF) Page 13

Appendix C - Image Packaging & Compression

 The LZW algorithm used in GIF matches algorithmically with the

29/09/2009 ftp://ftp.ncsa.uiuc.edu/misc/file.form…

ftp.ncsa.uiuc.edu/misc/…/gif87a.doc 16/19

 standard LZW algorithm with the following differences:

 1. A special Clear code is defined which resets all

 compression/decompression parameters and tables to a start-up state.

 The value of this code is 2**<code size>. For example if the code

 size indicated was 4 (image was 4 bits/pixel) the Clear code value

 would be 16 (10000 binary). The Clear code can appear at any point

 in the image data stream and therefore requires the LZW algorithm to

 process succeeding codes as if a new data stream was starting.

 Encoders should output a Clear code as the first code of each image

 data stream.

 2. An End of Information code is defined that explicitly indicates the

 end of the image data stream. LZW processing terminates when this

 code is encountered. It must be the last code output by the encoder

 for an image. The value of this code is <Clear code>+1.

 3. The first available compression code value is <Clear code>+2.

 4. The output codes are of variable length, starting at <code size>+1

 bits per code, up to 12 bits per code. This defines a maximum code

 value of 4095 (hex FFF). Whenever the LZW code value would exceed

 the current code length, the code length is increased by one. The

 packing/unpacking of these codes must then be altered to reflect the

 new code length.

BUILD 8-BIT BYTES

 Because the LZW compression used for GIF creates a series of

 variable length codes, of between 3 and 12 bits each, these codes must

 be reformed into a series of 8-bit bytes that will be the characters

 actually stored or transmitted. This provides additional compression of

 the image. The codes are formed into a stream of bits as if they were

 packed right to left and then picked off 8 bits at a time to be output.

 Assuming a character array of 8 bits per character and using 5 bit codes

29/09/2009 ftp://ftp.ncsa.uiuc.edu/misc/file.form…

ftp.ncsa.uiuc.edu/misc/…/gif87a.doc 17/19

 to be packed, an example layout would be similar to:

 byte n byte 5 byte 4 byte 3 byte 2 byte 1

 +-.....-----+--------+--------+--------+--------+--------+

 | and so on |hhhhhggg|ggfffffe|eeeedddd|dcccccbb|bbbaaaaa|

 +-.....-----+--------+--------+--------+--------+--------+

 Note that the physical packing arrangement will change as the

 number of bits per compression code change but the concept remains the

 same.

PACKAGE THE BYTES

 Once the bytes have been created, they are grouped into blocks for

 output by preceeding each block of 0 to 255 bytes with a character count

 byte. A block with a zero byte count terminates the Raster Data stream

 for a given image. These blocks are what are actually output for the

Graphics Interchange Format (GIF) Page 14

Appendix C - Image Packaging & Compression

 GIF image. This block format has the side effect of allowing a decoding

 program the ability to read past the actual image data if necessary by

 reading block counts and then skipping over the data.

Graphics Interchange Format (GIF) Page 15

Appendix D - Multiple Image Processing

 Since a GIF data stream can contain multiple images, it is

 necessary to describe processing and display of such a file. Because

 the image descriptor allows for placement of the image within the

 logical screen, it is possible to define a sequence of images that may

 each be a partial screen, but in total fill the entire screen. The

 guidelines for handling the multiple image situation are:

 1. There is no pause between images. Each is processed immediately as

 seen by the decoder.

 2. Each image explicitly overwrites any image already on the screen

29/09/2009 ftp://ftp.ncsa.uiuc.edu/misc/file.form…

ftp.ncsa.uiuc.edu/misc/…/gif87a.doc 18/19

 inside of its window. The only screen clears are at the beginning

 and end of the GIF image process. See discussion on the GIF

 terminator.

29/09/2009 ftp://ftp.ncsa.uiuc.edu/misc/file.form…

ftp.ncsa.uiuc.edu/misc/…/gif87a.doc 19/19

