
Preface, Contents

Part 1: Working with the
Ladder Editor

Part 2: Language Description

Appendix

Glossary, Index

C79000-G7076-C504-02

Ladder Logic (LAD)
for S7-300 and S7-400
Programming

Manual

SIMATIC

ii
Ladder Logic (LAD) for S7-300 and S7-400

C79000 G7076 C504 02

This manual contains notices which you should observe to ensure your own personal safety, as well as to
protect the product and connected equipment. These notices are highlighted in the manual by a warning
triangle and are marked as follows according to the level of danger:

!
Danger

indicates that death, severe personal injury or substantial property damage will result if proper precautions are
not taken.

!
Warning

indicates that death, severe personal injury or substantial property damage can result if proper precautions are
not taken.

!
Caution

indicates that minor personal injury or property damage can result if proper precautions are not taken.

Note

draws your attention to particularly important information on the product, handling the product, or to a particular
part of the documentation.

The device/system may only be set up and operated in conjunction with this manual.

Only qualified personnel should be allowed to install and work on this equipment. Qualified persons are
defined as persons who are authorized to commission, to ground, and to tag circuits, equipment, and sys-
tems in accordance with established safety practices and standards.

Note the following:

!
Warning

This device and its components may only be used for the applications described in the catalog or the technical
description, and only in connection with devices or components from other manufacturers which have been
approved or recommended by Siemens.

This product can only function correctly and safely if it is transported, stored, set up, and installed correctly, and
operated and maintained as recommended.

SIMATIC� and SINEC� are registered trademarks of SIEMENS AG.

Third parties using for their own purposes any other names in this document which refer to trademarks might
infringe upon the rights of the trademark owners.

We have checked the contents of this manual for agreement with the
hardware and software described. Since deviations cannot be precluded
entirely, we cannot guarantee full agreement. However, the data in this
manual are reviewed regularly and any necessary corrections included in
subsequent editions. Suggestions for improvement are welcomed.

� Siemens AG 1996
Technical data subject to change.

Disclaimer of LiabilityCopyright � Siemens AG 1996 All rights reserved

The reproduction, transmission or use of this document or its contents is
not permitted without express written authority. Offenders will be liable for
damages. All rights, including rights created by patent grant or registration
of a utility model or design, are reserved.

Siemens AG
Automation Group
Industrial Automation Systems
Postfach 4848, D-90327 Nürnberg

Siemens Aktiengesellschaft C79000-G7076-C504

Safety Guidelines

Qualified Personnel

Correct Usage

Trademarks

iii
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Preface

This manual is your guide to creating user programs in the Ladder Logic
(LAD) programming language. The manual explains the basic procedures for
creating programs. The online help contains more detailed information about
operating procedures.

This manual also includes a reference section that describes the syntax and
functions of the language elements of Ladder Diagram.

The manual is intended for S7 programmers, operators, and
maintenance/service personnel. A working knowledge of automation
procedures is essential.

This manual is valid for release 3.0 of the STEP 7 programming software
package.

LAD corresponds to the “Ladder Logic” language defined in the
International Electrotechnical Commission’s standard IEC 1131-3. For
further details, refer to the table of standards in the STEP 7 file
NORM_TBL.WRI.

Purpose

Audience

Scope of the
Manual

Compliance with
Standards

iv
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

There is a wide range of both general and task-oriented user documentation
available to support you when configuring and programming an S7
programmable controller. The following descriptions and the figure below
will help you to find the user documentation you require.

LAD FBD SCL

CFCs for
S7

Reference
Manual

Progr.
Manual

User
Manual

GRAPH
for S7

HiGraph

/234/

/231/

/233/ /236/ /250/

/254//251/ /252/

/xxx/: Number in the list of references

/235/

System Software for S7-300/S7-400
Program Design

Standard Software for S7 and M7
STEP 7

Primer

/30/

S7-300 Programmable Controller
Quick Start

System Software for
S7-300/400
System and Standard
Functions

User
Manual

/230/

Standard Software for S7
Converting S5 Programs

Language Packages

Online Help

This symbol indicates the order in which you should read the
manuals, especially as a first-time user of S7.

This documentation introduces the methodology.

This is a reference manual on a specific topic.

The documentation is supported by online help.

Symbol Meaning

Manuals on
S7-300/S7-400
Hardware

Manual

STL

/232/

Overview of the
STEP 7
Documentation

Preface

v
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Table 1-1 Summary of the Documentation

Title Subject

S7-300 Programmable
Controller
Quick Start, Primer

The primer provides you with a very simple introduction to the methods of configuring
and programming an S7-300/400. It is particularly suitable for first-time users of an S7
programmable logic controller.

S7-300/400 Program
Design
Programming Manual

The “S7-300/400 Program Design” programming manual provides you with the basic
information you require about the structure of the operating system and a user program
for an S7 CPU. First-time users of an S7-300/400 should use this manual to get a basic
overview of programming methods on which to base the design of a user program.

S7-300/400 System and
Standard Functions
Reference Manual

The S7 CPUs have system functions and organization blocks integrated in the operating
system that can be used when programming. The manual provides you with an
overview of the system functions, organization blocks and loadable standard functions
available with an S7 programmable controller and contains detailed interface
descriptions explaining how to use the functions and blocks in your user program.

STEP 7
User Manual

The “STEP 7” User Manual explains the basic use and functions of the STEP 7
automation software. Whether you are a first-time user of STEP 7 or an experienced
STEP 5 user, the manual will provide you with an overview of the procedures for
configuring, programming and getting started with an S7-300/400 programmable
controller. When working with the software, you can call up the online help which
supports you with information about specific details of the program.

Converting S5 Programs
User Manual

You require the “Converting S5 Programs” User Manual if you want to convert
existing S5 programs and to run them on S7 CPUs. The manual explains how to use the
converter. The online help system provides more detailed information about using the
specific converter functions. The online help system also includes an interface
description of the available converted S7 functions.

STL, LAD, FBD, SCL1

Manuals
The manuals for the language packages STL, LAD, FBD, and SCL contain both
instructions for the user and a description of the language. To program an S7-300/400,
you only require one of the languages, but you can, if required, mix the languages
within a project. When using one of the languages for the first time, it is advisable to
familiarize yourself with the methods of creating a program as explained in the manual.

When working with the software, you can use the online help system which provides
you with detailed information about using the editors and compilers.

GRAPH1 , HiGraph1,
CFC1

Manuals

The GRAPH, HiGraph, and CFC languages provide you with optional methods for
implementing sequential control systems, status control systems, or graphical
interconnection of blocks. The manuals contain both the user instructions and the
description of the language. When using one of these languages for the first time, it is
advisable to familiarize yourself with the methods of creating a program based on the
“S7-300 and S7-400 Program Design” manual. When working with the software, you
can also use the online help system (with the exception of HiGraph) that provides you
with detailed information about using the editors and compilers.

1 Optional package for system software for S7-300/S7-400

Preface

vi
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

To use the LAD effectively, you should already be familiar with the theory
behind S7 programs. This is explained in the Programming Manual /234/.
The language packages also use the standard software for S7, so you you
should also be familiar with the standard software as described in the User
Manual /231/.

The manual is divided into the following parts:

� Part 1 introduces you to the use of the Editor.

� Part 2 explains all LAD operations and is intendede for reference
purposes.

� The glossary includes definitions of the basic terms.

� The index helps you find the relevant page on a subject of your choice.

References to other manuals and documentation are indicated by numbers in
slashes /.../. These numbers refer to the titles of manuals listed in Appendix
KEIN MERKER.

If you have any questions regarding the software described in this manual
and cannot find an answer here or in the online help, please contact the
Siemens representative in your area. You will find a list of addresses in the
Appendix of /70/ or /100/, or in catalogs, and in Compuserve (go
autforum) . You can also contact our Hotline under the following phone or
fax number:

Tel. (+49) (911) 895-7000 (Fax 7001)

If you have any questions or comments on this manual, please fill out the
remarks form at the end of the manual and return it to the address shown on
the form. We would be grateful if you could also take the time to answer the
questions giving your personal opinion of the manual.

Siemens also offers a number of training courses to introduce you to the
SIMATIC S7 automation system. Please contact your regional training center
or the central training center in Nuremberg, Germany for details:

D-90327 Nuremberg, Tel. (+49) (911) 895-3154.

The user’s guide sections in this manual do not describe procedures in
step-by-step detail, but simply outline basic procedures. You will find more
detailed information on the individual dialogs in the software and how to use
them in the online help.

How to Use This
Manual

Conventions

Additional
Assistance

Notes on Using the
Manual

Preface

vii
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Contents

Preface iii.

Part 1: Working with the Ladder Editor

1 Product Overview 1-1.

2 Introduction 2-1.

2.1 Structure of User Programs 2-2.

2.2 Creating User Programs – Overview 2-4.

2.3 Rules to Observe 2-7.

3 Creating Logic Blocks 3-1.

3.1 Creating Logic Blocks – Overview 3-2.

3.2 Logic Blocks in the Editor 3-3.

3.3 Structure of the Variable Declaration Table 3-6.

3.4 Editing Variable Declaration Tables – Overview 3-8.

3.5 Declaring Multiple Instances 3-10.

3.6 Assigning System Attributes for Parameters 3-11.

3.7 Editing the Code Section – Overview 3-13.
Editable Parts of the Code Section 3-13.

3.8 Basic Guidelines for Entering Ladder Logic Instructions 3-15.

3.9 Entering Ladder Elements 3-18.

3.10 Creating Parallel Branches 3-21.

3.11 Editing Addresses and Parameters 3-23.

3.12 Symbolic Addressing 3-24.

3.13 Editing in the Overwrite Mode 3-26.

3.14 Entering Titles and Comments 3-28.

viii
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

4 Creating Data Blocks and User-Defined Data Types 4-1.

4.1 Creating Data Blocks – Overview 4-2.

4.2 Selecting a Method 4-4.

4.3 Editing the Declaration Table 4-5.

4.4 Editing Actual Data Values 4-6.

4.5 Creating User-Defined Data Types (UDTs) 4-8.

5 Editing the Block Properties and Testing the Program 5-1.

5.1 Editing the Block Properties 5-2.

5.2 Testing your Ladder Program - Overview 5-5.

5.3 Setting the Program Status 5-6.

5.4 Setting the Trigger Conditions 5-7.

5.5 Choosing a Test Environment and Starting/Stopping the Program Status 5-8

Part 2: Language Description

6 Configuration and Elements of Ladder Logic 6-1.

6.1 Elements and Boxes 6-2.

6.2 Boolean Logic and Truth Tables 6-6.

6.3 Significance of the CPU Registers in Instructions 6-12.

7 Addressing 7-1.

7.1 Overview 7-2.

7.2 Types of Addresses 7-4.

8 Bit Logic Instructions 8-1.

8.1 Overview 8-2.

8.2 Normally Open Contact 8-3.

8.3 Normally Closed Contact 8-4.

8.4 Output Coil 8-5.

8.5 Midline Output 8-6.

8.6 Invert Power Flow 8-7.

8.7 Save RLO to BR Memory 8-8.

8.8 Set Coil 8-9.

8.9 Reset Coil 8-10.

8.10 Set Counter Value 8-11.

8.11 Up Counter Coil 8-12.

8.12 Down Counter Coil 8-13.

8.13 Pulse Timer Coil 8-14.

8.14 Extended Pulse Timer Coil 8-15.

Contents

ix
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

8.15 On-Delay Timer Coil 8-16.

8.16 Retentive On-Delay Timer Coil 8-17.

8.17 Off-Delay Timer Coil 8-18.

8.18 Positive RLO Edge Detection 8-19.

8.19 Negative RLO Edge Detection 8-20.

8.20 Address Positive Edge Detection 8-21.

8.21 Address Negative Edge Detection 8-22.

8.22 Set Reset Flipflop 8-23.

8.23 Reset Set Flipflop 8-24.

9 Timer Instructions 9-1.

9.1 Location of a Timer in Memory and Components of a Timer 9-2.

9.2 Choosing the Right Timer 9-4.

9.3 Pulse S5 Timer 9-5.

9.4 Extended Pulse S5 Timer 9-7.

9.5 On-Delay S5 Timer 9-9.

9.6 Retentive On-Delay S5 Timer 9-11.

9.7 Off-Delay S5 Timer 9-13.

10 Counter Instructions 10-1.

10.1 Location of a Counter in Memory and Components of a Counter 10-2.

10.2 Up-Down Counter 10-3.

10.3 Up Counter 10-5.

10.4 Down Counter 10-7.

11 Integer Math Instructions 11-1.

11.1 Add Integer 11-2.

11.2 Add Double Integer 11-3.

11.3 Subtract Integer 11-4.

11.4 Subtract Double Integer 11-5.

11.5 Multiply Integer 11-6.

11.6 Multiply Double Integer 11-7.

11.7 Divide Integer 11-8.

11.8 Divide Double Integer 11-9.

11.9 Return Fraction Double Integer 11-10.

11.10 Evaluating the Bits of the Status Word After Integer Math Instructions 11-11. . .

Contents

x
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

12 Floating-Point Math Instructions 12-1.

12.1 Overview 12-2.

12.2 Add Floating-Point Numbers 12-3.

12.3 Subtract Floating-Point Numbers 12-4.

12.4 Multiply Floating-Point Numbers 12-5.

12.5 Divide Floating-Point Numbers 12-6.

12.6 Evaluating the Bits of the Status Word After Floating-Point Instructions 12-7. .

12.7 Establishing the Absolute Value of a Floating-Point Number 12-8.

12.8 Establishing the Square and/or the Square Root of a
Floating-Point Number 12-9.

12.9 Establishing the Natural Logarithm of a Floating-Point Number 12-11.

12.10 Establishing the Exponential Value of a Floating-Point Number 12-12.

12.11 Establishing the Trigonometrical Functions of Angles as Floating-Point
Numbers 12-13.

13 Comparison Instructions 13-1.

13.1 Compare Integer 13-2.

13.2 Compare Double Integer 13-3.

13.3 Compare Floating-Point Numbers 13-5.

14 Move and Conversion Instructions 14-1.

14.1 Assign a Value 14-2.

14.2 BCD to Integer 14-4.

14.3 Integer to BCD 14-5.

14.4 Integer to Double Integer 14-6.

14.5 BCD to Double Integer 14-7.

14.6 Double Integer to BCD 14-8.

14.7 Double Integer to Floating-Point Number 14-9.

14.8 Ones Complement Integer 14-10.

14.9 Ones Complement Double Integer 14-11.

14.10 Twos Complement Integer 14-12.

14.11 Twos Complement Double Integer 14-13.

14.12 Negate Floating-Point Number 14-14.

14.13 Round to Double Integer 14-15.

14.14 Truncate Double Integer Part 14-16.

14.15 Ceiling 14-17.

14.16 Floor 14-18.

Contents

xi
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

15 Word Logic Instructions 15-1.

15.1 Overview 15-2.

15.2 WAnd Word 15-3.

15.3 WAnd Double Word 15-4.

15.4 WOr Word 15-5.

15.5 WOr Double Word 15-6.

15.6 WXOr Word 15-7.

15.7 WXOr Double Word 15-8.

16 Shift and Rotate Instructions 16-1.

16.1 Shift Instructions 16-2.

16.2 Rotate Instructions 16-10.

17 Data Block Instructions 17-1.

17.1 Open Data Block: DB or DI 17-2.

18 Jump Instructions 18-1.

18.1 Overview 18-2.

18.2 Jump in the Block If RLO = 1 (Unconditional Jump) 18-3.

18.3 Jump in the Block If RLO = 1 (Conditional Jump) 18-4.

18.4 Jump in the Block If RLO = 0 (Jump-If-Not) 18-5.

18.5 Label 18-6.

19 Status Bit Instructions 19-1.

19.1 Overview 19-2.

19.2 Exception Bit BR Memory 19-3.

19.3 Result Bits 19-4.

19.4 Exception Bits Unordered 19-6.

19.5 Exception Bit Overflow 19-7.

19.6 Exception Bit Overflow Stored 19-9.

20 Program Control Instructions 20-1.

20.1 Calling FCs/SFCs from Coil 20-2.

20.2 Calling FBs, FCs, SFBs, SFCs, and Multiple Instances 20-4.

20.3 Return 20-7.

20.4 Master Control Relay Instructions 20-8.

20.5 Master Control Relay Activate/Deactivate 20-9.

20.6 Master Control Relay On/Off 20-12.

Contents

xii
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Appendix

A Alphabetical Listing of Instructions A-1.

A.1 Listing with International Names A-2.

A.2 Listing with International Names and SIMATIC Equivalents A-5.

A.3 Listing with SIMATIC Names A-9.

A.4 Listing with SIMATIC Names and International Equivalents A-12.

A.5 Listing with International Short Names and SIMATIC Short Names A-16.

B Programming Examples B-1.

B.1 Overview B-2.

B.2 Bit Logic Instructions B-3.

B.3 Timer Instructions B-7.

B.4 Counter and Comparison Instructions B-11.

B.5 Integer Math Instructions B-13.

B.6 Word Logic Instructions B-14.

C Number Notation C-1.

C.1 Number Notation C-2.

21 References D-1.

Glossary Glossary-1.

Index Index-1.

Contents

Product Overview 1

Introduction 2

Creating Logic Blocks 3

Creating Data Blocks and
User Data Types 4

Editing the Block Properties
and Testing the Program 5

Part 1:
Working with the
Ladder Editor

1-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

1-1
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Product Overview

LAD stands for Ladder Logic. LAD is a graphic programming language. The
syntax of the instructions is similar to a circuit diagram. With Ladder Logic,
you can follow the signal flow between power rails via inputs, outputs, and
instructions.

The programming language Ladder Logic has all the necessary elements for
creating a complete user program. It contains the complete range of basic
instructions and a wide range of addresses are available. Functions and
function blocks allow you to structure your LAD program clearly.

The LAD Programming Package is an integral part of the STEP 7 Standard
Software. This means that following the installation of your STEP 7 software,
all the editor functions, compiler functions, and test/debug functions for LAD
are available to you.

Using LAD, you can create your own user program with the Incremental
Editor. The input of the local block data structure is made easier with the
help of table editors.

There are three programming languages in the standard software, STL, FBD,
and LAD. You can switch from one language to the other almost without
restriction and choose the most suitable language for the particular block you
are programming.

If you write programs in LAD or FBD, you can always switch over to the
STL representation. If you convert LAD programs into FBD programs and
vice versa, program elements that cannot be represented in the destination
language are displayed in STL.

What is LAD?

The Programming
Language Ladder
Logic

The Programming
Package

1

1-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

2-1
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Introduction

This chapter is a brief description of the structure of a user program
consisting of blocks.

The LAD Editor runs on the platform of the SIMATIC Manager which
underlies all STEP 7 applications. This chapter explains how to change from
the SIMATIC Manager to the LAD Editor and how the created blocks fit into
the project structure.

Section Description Page

2.1 Structure of User Programs 2-2

2.2 Creating User Programs - Overview 2-4

2.3 Rules to Observe 2-7

In This Chapter

Chapter Overview

2

2-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

2.1 Structure of User Programs

A user program consists of logic blocks and data blocks. Logic blocks are
blocks with a code section such as organization blocks, function blocks, or
functions.

Organization blocks (OBs) form the interface between the operating system
and the user program. Different organization blocks have different functions.
To create the LAD user program for your S7 CPU, you select the
organization blocks necessary for your specific automation task. For the most
basic task you will require the following:

� Startup (OB100, OB101)

� Scan cycle (OB1)

� Error handling (OB80 to OB87, OB121, OB122), if you do not want your
CPU to switch to STOP when an error occurs.

There are also organization blocks available to handle interrupts in the CPU
or other interrupts from the process.

For detailed information about the functions of each organization block and
the startup information provided by the CPU operating system, refer to the
Reference Manual /235/.

You can program every organization block as a structured program by
creating functions (FCs) and function blocks (FBs) and calling them in the
code section. When the blocks are called, you supply the data required for
the declared parameters.

� A function block (FB) is a logic block with “memory”. This memory
takes the form of instance data blocks assigned to the FB. The instance
DBs store all the actual parameters and static data relating to the function
block.

� A function (FC) is a logic block without “memory”, in other words
without associated instance DBs. After an FC has been processed, the
output parameters contain the calculated function values. Once the
function has been called, the user decides how the actual parameters are
used and stored.

The operating system makes the following data available:

� Peripheral I/Os

� Process image input/output

� Bit memory

� Timers

� Counters

Logic Blocks and
Data Blocks

Organization
Blocks

Functions/
Function Blocks

Data

Introduction

2-3
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

You can also define your own data:

� You can define shared data in data blocks. This data is accessible to the
entire user program.

� You can define static variables. These are only valid in the function block
within which they are defined. Every time an FB is called, an instance
data block is specified which includes all parameters and the static data.
In the case of multiple instances, the instance and static data are
incorporated in the instance data block.

� You can define temporary data when you create logic blocks. This data
only requires stack memory during the actual processing of the block.

Data blocks store the data of the user program. There are two types of data
blocks: shared data blocks and instance data blocks.

� Shared DBs can be accessed by all the blocks in the program.

� Instance data blocks are assigned to a function block and contain not only
the data of the function block but also the data of any defined multiple
instances. For this reason, you should only access an instance data block
in connection with its own specific function block.

The Programming Manual /234/ contains an introduction to programming
methods.

Data Blocks

Additional
Information

Introduction

2-4
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

2.2 Creating User Programs – Overview

A user program that runs on an S7 CPU is essentially made up of blocks. It
also contains information such as data about the system configuration and
about system networking. Depending on your application, the user program
will include the following elements:

� Organization blocks (OBs)

� Function blocks (FBs)

� Functions (FCs)

� Data blocks (DBs)

To simplify your work, you can create your own user-defined data types
(UDTs), which can be used either as data types in their own right or as a
template for creating data blocks.

Some of the frequently used blocks such as the system function blocks
(SFBs) and the system functions (SFCs) are integrated on the CPU. Other
blocks (for example blocks for IEC functions or closed-loop controller
blocks) are available as separate packages. You do not need to program these
blocks but simply load them into your user program.

Note

You can check which SFBs and SFCs are integrated on your CPU online by
clicking PLC � Module Information... in the menu bar.

The STEP 7 standard software includes an editor for programming blocks.
The editor can be set to the LAD programming language to allow you to
program logic blocks (OBs, FBs, FCs). The LAD Editor works incrementally,
which means that the syntax of each entry you make is checked. Syntax
errors are reported and illegal arrangements of LAD elements or addresses
are rejected immediately.

The LAD Editor is started from the SIMATIC Manager. You must first create
a project containing an S7 program in the SIMATIC Manager before you can
call the editor. The program you create can be either dependent or
independent of the hardware. You either add the S7 program directly into the
project or edit the S7 program assigned to the programmable module. The
program itself can contain the user program (blocks), source files, or charts.

With the LAD Editor, you can only edit blocks stored in the folder of the user
program.

User Program

LAD Incremental
Editor

Starting from the
SIMATIC Manager

Introduction

2-5
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

File

Press F1 for help

Options Help

SIMATIC Manager – TRAFFIC

NUM

TRAFFIC - <Offline> (Project)

TRAFFIC

S7 Program (1)

SIMATIC 300 Station1

Source Files

Blocks

OB1 FB6

DB5 DB6

ViewInsertEdit PLC Window

ON OFF

Figure 2-1 Starting the LAD Editor from the SIMATIC Manager

To create a block for the first time, you first create an empty block in the
SIMATIC Manager with which you can then open the Editor. Once you have
opened the LAD Editor you can then create further blocks.

� In the SIMATIC Manager you can select the “Blocks” folder and insert
the block type you want by selecting Insert � S7 Block � The new
block appears on the right hand side of the project window.

� Once you are in the editor, you can create a block by selecting File �
New. In the dialog box that follows you are prompted to specify the block
type and number you require.

When you create a block, you also select the programming language you
want to use. The corresponding editor is then activated based on this
selection. To program in LAD, select “LAD” as the working language.

You can open a block in the SIMATIC Manager by double-clicking the block.
Alternatively, you can open it by either selecting the menu command
Edit � Open Object or by clicking the corresponding button in the toolbar.

Creating a Block

Choosing a
Programming
Language

Opening a Block

Introduction

2-6
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

When you save a block in the Editor, remember the following points:

� File � Save always saves the block in the “Blocks” folder on the hard disk
of your programming device/PC.

� PLC � Download downloads the opened block to the CPU.

After creating the blocks for your user program, download them to the S7
CPU in your SIMATIC Manager. For further information about downloading
user programs, refer to the User Manual /231/.

Note

It is not always sufficient to download the created blocks individually to the
CPU because data from the system configuration may sometimes be
required. You should therefore download the complete program in the
SIMATIC Manager.

The LAD Editor has the following functions which you will find useful when
creating programs and starting up.

Table 2-1 Supporting Functions in the LAD Editor

Function Menu Command

Call reference data of the active user
programs

Options � Reference Data

Edit the symbol table / individual
symbols

Options �� Symbol Table /
Options �� Edit Symbols

Monitor / modify variables PLC � Monitor/Modify Variables

Display / modify operating mode or
memory reset on the CPU

PLC � Operating Mode or
PLC �� Clear/Reset

Display the status of the selected
module

PLC � Module Information

Set the time and date on the CPU PLC � Set Time and Date

These functions are described in detail in the User Manual /231/.

Saving and
Downloading
Blocks

Calling Supporting
Functions

Introduction

2-7
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

2.3 Rules to Observe

The order in which you create logic blocks and data blocks in a user program
is important. As a rule: if blocks are called within other blocks, the called
blocks must already exist before you program their calls. Entering a
non-existent block as a Ladder element (box) is not possible. If you program
a call for a non-existent block using CALL, an error is reported when you
save the program because the called block cannot be found.

With STEP 7 you can edit a user program stored on the CPU online while the
CPU is in the RUN mode.

!
Warning

If you make online modifications to a program while it is running, this can
lead to malfunctions and unforeseen reactions in your plant or process that
could cause injury to persons or damage to equipment.

If the CPU is switched online and is in the RUN mode, modifying the user
program stored on the CPU can cause situations in which machines and
devices are suddenly turned on or off, potentially causing injury to persons
or damage to equipment.

Always plan the sequence of events in your process in accordance with the
pertinent safety regulations. Never attempt to make online modifications to a
program while it is running without having first considered the consequences
and taking appropriate action to prevent accidents.

Note

For information about working online and offline, refer to the User Manual
/231/.

Order of Creating
Blocks

Editing during
Program
Execution

Introduction

2-8
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Introduction

3-1
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Creating Logic Blocks

A user program cannot exist without logic blocks. In many situations, you
can use the blocks integrated on the CPU or the available standard function
blocks. You will, however, always have to create a number of logic blocks
yourself. This chapter describes how to create blocks using the LAD Editor.

Section Description Page

3.1 Creating Logic Blocks – Overview 3-2

3.2 Logic Blocks in the Editor 3-3

3.3 Structure of the Variable Declaration Table 3-6

3.4 Editing Variable Declaration Tables – Overview 3-8

3.5 Declaring Multiple Instances 3-10

3.6 Assigning System Attributes for Parameters 3-11

3.7 Editing the Code Section – Overview 3-13

3.8 Basic Guidelines for Entering Ladder Logic Instructions 3-15

3.9 Entering Ladder Elements 3-18

3.10 Creating Parallel Branches 3-21

3.11 Editing Addresses and Parameters 3-23

3.12 Symbolic Addressing 3-24

3.13 Editing in Overwrite Mode 3-26

3.14 Entering Titles and Comments 3-28

In This Chapter

Chapter Overview

3

3-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

3.1 Creating Logic Blocks – Overview

Logic blocks (OBs, FBs, FCs) are made up of a variable declaration section
and a code section. They also have certain properties. When programming,
you must edit the following three sections:

� Variable declaration table: In the variable declaration table, you declare
the parameters, the system attributes for parameters, and the local
variables of your block.

� Code section: In the code section, you program the block code that is to
be executed by the programmable controller. This consists of one or more
networks with Ladder elements.

� Block properties: The block properties include additional information,
such as a time stamp and a path name, which is entered by the system
itself. In addition to these items you can enter further details about the
name, family, release and author and can assign system attributes for
blocks (see Chapter 5).

The order in which you edit the three sections is irrelevant and you can, of
course, make corrections and additions.

When you refer to symbols from the symbol table, you should make sure that
they are complete and, when necessary, add any missing information.

Save the block

Edit the variable declaration table
for the block

LAD Editor

Make the settings for the editor

Create a logic block (FB, FC or OB)
in the SIMATIC Manager.

Enter the block properties

Edit the code section

Figure 3-1 Procedure for Creating Logic Blocks in LAD

Logic Blocks

Editing a Logic
Block

Creating Logic Blocks

3-3
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

3.2 Logic Blocks in the Editor

Before you start programming in the LAD Editor, you should familiarize
yourself with the various ways in which you can customize the editor to suit
your preferences and method of working.

With the menu command Options � Customize, you can open a tabbed page
dialog box. In the “Editor” tabbed page, you can make the following basic
settings for block programming:

� Font (type style, size) used in text and tables

� The programming language of your choice (FBD, LAD, or STL). A new
block will be opened in FBD, LAD, or STL depending on the
programming language you select. Bearing in mind certain restrictions,
you can switch to one of the other languages later on and still view the
block.

� Display of symbols and comment in the new block (on or off)

The settings for language, comment and symbols can be altered at any time
during editing by using the commands in the View ” ... menu.

In the “LAD/FBD” tabbed page, which you also display with Options �
Customize, you can make the following basic settings:

� Ladder Layout: determines the display size of your networks. The
selected size decides how many LAD elements you can position next to
each other in one network. This setting also has effects when printing out
the block.

� Width of Address Field: determines the width of text fields for addresses.
If the width is exceeded, a line break is made. A large address field is
more practical for symbolic addressing, a small field is sufficient for
absolute addressing.

� Line/Color for: the selected element, contact, status fulfilled, status not
fulfilled

Overview

Settings in the
Editor

Settings for LAD

Creating Logic Blocks

3-4
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

When you open a logic block, a window appears displaying the following:

� The variable declaration table of the block in the upper part

� The code section in the lower part, in which you edit the actual block
code

FB6-<Offline>

Network 1 : Red for road traffic

Network 2 : Green for road traffic

#starter

#condition

#condition

#condition #g car

#t_next_red_car #t_dur_r_car

Network 3 : Start permanent amber for cars

#condition #g car
SE

S5T#3S

Address Decl. Symbol Data Type Initial Value Comment

dur_g_p

del_r_p

starter

t_dur_g_ped

S5TIME

S5TIME

BOOL

TIMER

S5T#0MS

S5T#0MS

FALSE

in

in

in

in

in

0.0

2.0

4.0

6.0

8.0

t_dur_y_car TIMER

FB6-<Offline>-LAD/STL/FBD: Programming S7 Blocks
File Edit Insert Debug View Options Window HelpPLC

Figure 3-2 Variable Declaration Table and Code Section in LAD

The block properties are edited in their own dialog (see Chapter 5).

The editor allows you enables you to open and work on several blocks
simultaneously.

The variable declaration table and the code section are closely linked as the
names from the variable declaration table are used in the code section. This
means that changes in the variable declaration table also affect the code
section and therefore the entire block.

Main Window of
the LAD Editor

Relationship
between the
Variable
Declaration and
Code Section

Creating Logic Blocks

3-5
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Table 3-1 Relationship between Variable Declaration and Code Section

Action in the Variable Declaration Reaction in the Code Section

New correct entry If invalid code exists, previously
undeclared variable becomes valid

Correct name change without type change Symbol is immediately shown
everywhere with new name

Correct name is changed to an invalid nameCode is not changed

Invalid name is changed to a correct name If invalid code exists, it becomes
valid

Type change If invalid code exists, it becomes
valid and if valid code exists, it
becomes invalid

Symbol deleted that is being used in the codeValid code becomes invalid

Comment change None

Incorrect entry of a new variable None

Deleting an unused variable None

Initial value change None

Creating Logic Blocks

3-6
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

3.3 Structure of the Variable Declaration Table

In the variable declaration table, you set the local variables including the
formal parameters of the block and the system attributes for parameters. This
has (among other things) the following effects:

� As a result of the declaration, memory is reserved in the local data stack
or instance data block.

� By setting the input, output, and in/out parameters you also define the
“interface” for calling a block in the program.

� Declaring variables in a function block provides the data structure for any
instance data block that you associate with the function block.

� By setting system attributes, you assign special properties to parameters
for message and connection configuration, operator interface functions
and process control configuration.

After opening a new logic block, a default variable declaration table is
displayed on the screen. This lists all the permitted declaration types for the
specific block (in, out, in_out, stat, temp) in the appropriate order.

When creating a new OB, a standard variable declaration is displayed in
which you can change the values.

The variable declaration table contains entries for the address, declaration,
symbolic name, data type, initial value, and comment for the variables. Each
table row represents a variable declaration. Variables of the data type array or
structure require more than one row.

TRAFFIC\...\FB40 - <Offline>

Address Decl. Symbol Data Type Initial Value Comment

ein

start

Motor

in_outp1

BOOL

BOOL

BOOL

INT

FALSE

FALSE

FALSE

in

in

out

out

in_out

0.0

0.1

2.0

2.1

4.0

Message BOOL

in_outp2 INTin_out6.0 0

FALSE

0

Light on

Switch

Motor

Motor

Figure 3-3 Example of a Variable Declaration Table

Overview

Structure of the
Variable
Declaration Table

Creating Logic Blocks

3-7
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

The columns in the variable declaration table are interpreted as follows:

Table 3-2 Columns of the Variable Declaration Table

Column Meaning Remarks Editing

Address Address in format BYTE.BIT In the case of data types which require more
than one byte, the address indicates this with
a jump to the next byte address.
Key:
* : Size of an array element in bytes
+ : Initial address, ref. to the structure start
= : Total memory requirement of a structure

System entry:
the address is
assigned and
displayed by
the system after
you have
finished
entering your
declaration.

Decl. Declaration type “Purpose” of the
variables

The following are possible depending on
block type:
Input parameters “in”
Output parameters “out”
In/out parameters “in_out”
Static variables “stat”
Temporary variables “temp”

Default settings
according to
block type

Symbol Symbolic name of variables The name must begin with a letter. Reserved
keywords are not permitted.

Mandatory

Data Type Data type of the variable
(BOOL, INT, WORD, ARRAY
etc.)

Basic data types can be selected in the menu
with the right mouse button.

Mandatory

Initial Value Initial value, when the software
should not assume a default value

Must be compatible with the data type.
Unless a specific actual value has been
selected, the initial value is used as the
actual value of the variable when editing a
DB for the first time.

Optional

Comment Comment on documentation Optional

If you have assigned system attributes to a variable, a symbol resembling a
golf flag appears in the “Symbol” column (see Figure 3-3). Double-click the
flag to open the “System Attributes” dialog box.

You can vary the width of the columns. Position the mouse pointer between
two columns and holding the left mouse button pressed move the mouse
horizontally. As an alternative, you can alter the width of the column using
the menu command View � Column Width... having previously selected the
table. This allows you to minimize the optional comment and initial value
columns and focus solely on the remaining columns.

Meaning of the
Columns

Meaning of the
“Golf Flag”

Altering the
Column Width

Creating Logic Blocks

3-8
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

3.4 Editing Variable Declaration Tables – Overview

After you have entered the required declaration type of a new declaration,
enter the name of the variables, the data type, the initial value (optional) and
the comment (optional). You can move the cursor to the next field with the
TAB key. At the end of a row an address will be assigned to the variable
automatically.

After each table field has been edited, its syntax is checked and any errors
are displayed in red. At this point, you can continue editing the table and
postpone the correction of errors to a later stage.

All the usual functions in the Edit menu are available to you when editing a
table. Using the context-sensitive right mouse button makes editing easier.

The menu displayed with the right mouse button also helps you to enter the
data type. The “Data Type” menu includes all elementary data types.

You can select single rows by clicking the write-protected address cell. You
can also select several rows of the same declaration type by holding down the
SHIFT key. The selected rows appear on a black background.

The “Decl.” column is read-only. The declaration type is determined by the
position of the declaration within the table. This ensures that variables can
only be entered in the correct order of their declaration types. If you want to
change the declaration type of a declaration, cut the declaration first and then
paste it under the new declaration type.

If you want to enter a structure as a variable, enter the name in the “Symbol”
column and the keyword STRUCT in the data type column. Press either the
TAB or the RETURN key to insert an empty row plus a final row
(END_STRUCT) for the structure. In the empty row, enter the elements of
the structure by entering its name, data type and its initial value (optional).
You can create more rows and insert further elements using either the menu
commands or by pressing RETURN.

If you want to select a structure, click the address or declaration cell of the
first or last row of the structure (containing the keyword STRUCT or
END_STRUCT). You can select individual declarations within a structure by
clicking the address cell in the relevant row.

If you want to enter a structure within another structure, the hierarchy is
indicated by the indented variable names.

Procedure

Editing Functions

Changing the
Declaration Type

Entering
Structures

Creating Logic Blocks

3-9
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

To enter an array as a data type, enter the name in the “Symbol” column and
the keyword ARRAY in the cell for the data type together with the array size,
for example array [1..20, 3..24] for a two-dimensional array. Press the TAB
key (if necessary, more than once) to insert a row in which you can enter the
data type of the array.

If you want to select an array, click the address cell in the relevant row.

Initial values for each array element can be entered singly or with a repetition
factor (see Figure 3-4):

� Individual entry: You assign each element its own initial value. The
values are separated by commas.

� Repetition factor: The same initial value can be assigned to several
elements. The value itself is shown in parentheses and is preceded by the
repetition factor which defines the number of elements.

Figure 3-4 shows an example of a variable declaration table:

TRAFFIC\...\FB50 - <Offline>

Address Decl. Symbol Data Type Initial Value Comment

structur1

 var1

 var2

STRUCT

BOOL

INT

FALSE

0

in

in

in

in

in

0.0

+0.0

+2.0

+4.0

=6.0

 var3 WORD

array1 ARRAY[1..20,1..40]in6.0

BOOL

TRUE

in*2.0

W#16#0

END_STRUCT

Figure 3-4 Structures and Arrays in a Variable Declaration Table

Note

If you make changes to the variable declaration of blocks whose calls you
have already programmed, time stamp conflicts may occur. You should
therefore first program all blocks to be called, and then program the blocks
that call them. In the case of function blocks, instance DBs should also be
re-created.

When making changes to a UDT which was entered as a data type in a
variable declaration, check the variable declaration of the block and then
save it again.

Entering Arrays

Example

Creating Logic Blocks

3-10
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

3.5 Declaring Multiple Instances

A multiple instance results from declaring a static variable of the same data
type as a function block (FB). In the code section, the instance is called as a
Ladder element.

For more detailed information about multiple instances, refer to the
Programming Manual /234/. Part 2 of this manual explains the syntax for
calling a multiple instance.

Keep to the following rules when declaring multiple instances:

� Declaring multiple instances is only possible in function blocks

� Function blocks within which a multiple instance has been declared must
also have an associated instance DB.

� A multiple instance can only be declared as a static variable (declaration
type “stat”).

To declare a multiple instance, you enter the variable name in the “Symbol”
column after the declaration type “stat”. Under data type, you enter the
function block. This can be done either by entering the absolute name of the
FB or a symbolic name. You can also add an optional comment.

TRAFFIC\...\FB60-<Offline>

varin

varout

varinout

tempo

BYTE

BYTE

BYTE

REAL

B#16#0

B#16#0

B#16#0

in

out

in_out

stat

temp

0.0

2.0

4.0

0.0

locinst local instanceFB6

Decl. Symbol Data TypeInitial Value CommentAddress

Figure 3-5 Declaration of Multiple Instances (Example)

Multiple Instances

Rules

Inputting Multiple
Instances

Creating Logic Blocks

3-11
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

3.6 Assigning System Attributes for Parameters

You can assign system attributes to blocks and parameters. These influence
the message and connection configuration, operator interface functions, and
process control configuration.

You can assign system attributes for parameters in the variable declaration
table.

To enter system attributes for parameters, select the name of the parameter in
the variable declaration table and select Edit � Object Properties in the
menu bar to display the Properties dialog. Select the “System Attributes”
tabbed page and enter the required attribute and its value.

Table 3-3 shows which system attributes you can enter in the variable
declaration table.

Table 3-3 System Attributes for Parameters

Attribute Value When to Assign the Attribute Permitted
Declaration type

S7_server connection, alarm_archivWhen the parameter is relevant to connection or
message configuration. This parameter contains
the connection or message number.

IN

S7_a_type alarm, alarm_8,
alarm_8p, alarm_s,
notify, ar_send

When the parameter will define the message
block type in a message block (only possible
when the S7_server attribute is set to
alarm_archiv).

IN, only with blocks
of the type FB and
SFB

S7_co pbkl, pbk, ptpl, obkl, fdl,
iso, pbks, obkv

When the parameter will specify the connection
type in the connection configuration (only
possible when the S7_server attribute is set to
connection).

IN

S7_m_c true, false When the parameter will be modified or
monitored from an operator panel.

IN/OUT / IN_OUT,
only with blocks of
the type FB and SFB

S7_shortcut Any 2 characters, for
example, W, Y

When the parameter is assigned a shortcut to
evaluate analog values.

IN/OUT / IN_OUT,
only with blocks of
the type FB and SFB

S7_unit Unit, for example, liters When the parameter is assigned a unit for
evaluating analog values.

IN/OUT / IN_OUT,
only with blocks of
the type FB and SFB

System Attributes

Entering System
Attributes for
Parameters

Creating Logic Blocks

3-12
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Table 3-3 System Attributes for Parameters, continued

Attribute Permitted
Declaration type

When to Assign the AttributeValue

S7_string_0 Any 16 characters, , for
example, OPEN

When the parameter is assigned text for
evaluating binary values

IN/OUT / IN_OUT,
only with blocks of
the type FB, SFB,
FC, and SFC

S7_string_1 Any 16 characters, , for
example, CLOSE

When the parameter is assigned text for
evaluating binary values

IN/OUT / IN_OUT,
only with blocks of
the type FB, SFB,
FC, and SFC

S7_visible true, false When you do not want the parameter to be
displayed in CFC.

IN/OUT / IN_OUT,
only with blocks of
the type FB, SFB,
FC, and SFC

S7_link true, false When you do not want the parameter to be
linked in CFC.

IN/OUT / IN_OUT,
only with blocks of
the type FB, SFB,
FC, and SFC

S7_dynamic true, false When you want the parameter to have dynamic
capability when testing in CFC.

IN/OUT / IN_OUT,
only with blocks of
the type FB, SFB,
FC, and SFC

S7_param true, false When you want the parameter to be protected
from incorrect value assignment in CFC.

IN/OUT / IN_OUT,
only with blocks of
the type FB, SFB,
FC, and SFC

Creating Logic Blocks

3-13
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

3.7 Editing the Code Section – Overview

In the code section you describe the program sequence of your logic block.
To do this, you form networks from Ladder elements. In most cases, the code
section of a logic block is made up of several networks. After you have
entered a Ladder element, the editor runs a check and shows you if any
entries were incorrect (errors are shown in red). Elements placed incorrectly
are rejected with an error message.

In a code section, you can edit the block title, network titles, block
comments, network comments, and, of course, the statements within the
networks.

TRAFFIC\...\FB6 - <Offline>

#starter

#condition

#condition#t_next_red_car #t_dur_r_car

#condition #g_car

FB6 : Traffic Light

Controlling a set of traffic lights for a pedestran crossing on a main street.

Network 1 : Red request for road traffic

The red request from road traffic is activated by a start input when the time between two
red phases for road traffic is running.

Network 2 : Green for road traffic

The traffic lights turn green when there is no request for red.

Block title

Block
comment

Network
title

Network
comment

Ladder
elements

Figure 3-6 Structure of the Code Section

Code Section

Editable Parts of
the Code Section

Creating Logic Blocks

3-14
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

The order in which you perform each of the following steps is not fixed.
When programming the code section of a new block, we recommend you
proceed as follows:

Enter block title (optional)

Edit networks

Enter Ladder elements

Enter network comment (optional)

Enter network title (optional)

Enter block comment (optional)

Figure 3-7 Editing the Code Section

You can make changes either in the insert or the overwrite mode. Toggle
between the insert and overwrite mode using the INSERT key.

Entering New
Blocks

Creating Logic Blocks

3-15
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

3.8 Basic Guidelines for Entering Ladder Logic Instructions

A Ladder network can contain several elements in different branches. All
elements and branches must be connected together; however, the power rail
on the left does not count as a connection (IEC 1131-3).

When you program in Ladder, you must observe certain guidelines.
Any errors are reported with an error message in the Program Editor.

Every Ladder network must end with a coil or a box. You cannot use the
following elements to close a network:

� Comparison boxes

� Midline outputs �(#)�

� Positive �(P)� or Negative �(N)� RLO edge detection

Branches that cause reverse power flow (from right to left) cannot be edited.
Figure 3-8 shows an example. With signal state “0” at I 1.4, a power flow
from right to left would be possible at I 6.8. This is not allowed.

I 1.0

Q 2.6

I 1.2 I 1.4 I 4.2

I 6.8

Q 4.4 I 2.8

Q 6.0

✗ Illegal Power Flow

Figure 3-8 Power Flow in Reverse Direction (Illegal)

Overview

Ending a Ladder
Network

Power Flow

Creating Logic Blocks

3-16
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

You cannot create branches that cause a short circuit. Figure 3-9 shows an
example:

I 1.0 I 1.2 I 1.4 Q 6.0

Illegal Short Circuit

✗

Figure 3-9 Short Circuit in a Ladder Network (Illegal)

The starting point of a branch for a box connection must always be the left
power rail. Logic or other boxes can, however, exist in the branch before the
box.

Boxes must not be placed within a T-branch. Exceptions to this are compare
boxes. Figure 3-10 shows an example:

I 1.0 I 1.2 I 1.4 Q 6.0

Box illegal at this
position✗

BoxT branch

Figure 3-10 Box in a T-Branch (Illegal)

Coils are automatically placed at the right end of a network where they form
the branch end.

Exceptions: Coils for Midline Outputs �(#)� and Positive �(P)� or
Negative �(N)� RLO Edge Detection cannot be placed on the extreme left
or the extreme right of a branch. Nor are they permitted in parallel branches.

Short Circuit

Placing Boxes

Placing Coils

Creating Logic Blocks

3-17
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Some coils require preceding logic and some coils cannot accept preceding
logic.

� Coils requiring preceding logic:

Output Coil �(), Set Coil �(S), Reset Coil �(R)

Midline Outputs �(#)� and Positive �(P)� or Negative �(N)� RLO
Edge Detection.

All Counter and Timer Coils

Jump-If-Not �(JMPN)

Master Control Relay On �(MCR<)

Save RLO to BR Memory �(SAVE)

Return �(RET)

� Coils that do not accept preceding logic:

Master Control Relay Activate �(MCRA)

Master Control Relay Deactivate �(MCRD)

Open Data Block �(OPN)

Master Control Relay Off �(MCR>)

All other coils can accept preceding logic but do not require it.

The following coils must not be used as parallel outputs:

Jump-If-Not �(JMPN)

Jump �(JMP)

Call FC SFC from Coil �(CALL)

Return �(RET)

Passing power to (activating) the enable input “EN” or the enable output
“ENO” of a logic box is possible but not necessary.

If a branch only consists of one instruction, deleting this instruction removes
the whole branch.

If you remove a box, all branches connected to the box with logic inputs,
with the exception of the main branch, are removed.

The overwrite mode is ideal for exchanging elements of the same type (see
Section 3.13).

Enable
Input/Enable
Output

Removing and
Changing

Creating Logic Blocks

3-18
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

3.9 Entering Ladder Elements

To select a network to allow you to enter LAD elements, click the network
name (for example, “Network 1”). When a network is selected you can, for
example, cut it, paste it again, or copy it.

To create a new network, select the menu command Insert � Network or
click the corresponding button in the toolbar. The new network is inserted
below the selected network. It only consists of one branch and one coil.

If you enter more elements than can be displayed on the screen, the network
is shifted to the left of the screen. To obtain a better overview, you can adjust
the display with the menu command View � Zoom In/Zoom Out/Zoom
Factor.

You go into a network by clicking a Ladder element with the mouse. Within
a network you can, in principle, select three areas with a mouse click:

� Ladder elements, for example, a contact or a box

� Junction points

� Empty instructions (lines or open branches)

You can select one area at a time with one mouse click. (Figure 3-11 shows
examples of selections. Here, a number of selections are shown
simultaneously.)

#r_ped#condition #t_dur_y_car

#t_dur_g_ped

#condition

Figure 3-11 Possible Selections in a Ladder Network

You can choose the color of the selections yourself by selecting the menu
command Options � Customize to open the “LAD/FBD” tabbed page.

Handling Networks

Selecting Objects
in Networks

Creating Logic Blocks

3-19
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

The following options are available for inserting Ladder elements:

� Enter a normally open contact, normally closed contact, or coil using the
function keys F2, F3, or F4.

� Click on the button for a normally open contact, normally closed contact,
or coil from the toolbar.

� Select an element from the Insert � LAD Element... menu.

� Select elements from the list box in the Program Elements dialog (see
Figure 3-12). To display this dialog box, use the menu command Insert �
Program Element..., the button in the toolbar, or the function key F11.

SE

#g car

FB6-<Offline> - LAD/STL/FBD Programming S7 Blocks

Press F1 for help. Insert

FB6-<Offline>

File Edit Insert PLC Debug View Options Window Help

& =>1

Network 1 : Red request for road traffic

Network 2 : Green for cars

#starter

#condition

#condition

#condition

#t_next_red_car #t_dur_r_car

Network 2 : Start permanent amber for road traffic

#condition

FB6 : Traffic light

Program Elements

Compare
Convert

S_CD
S_CU
S_CUD

DB Call
Real Number Fct.

Counters

Floating Point Number

<

Bit logic

Object
Block Template
Data Type
Declaration Row
Network
Program Elements
LAD Element

Figure 3-12 Inserting a Ladder Element Using the Program Elements Dialog Box

Ladder elements are always inserted behind the currently selected element.

Entering Ladder
Logic Elements

Creating Logic Blocks

3-20
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Note

If you select the group “FB Blocks”or “FC Blocks” in the “Program
Elements” list box, all the corresponding blocks in the S7 program are listed
below. If you select the group “SFC Blocks” or “SFB Blocks”, all the system
function blocks or system functions available on the CPU will be listed.

If you select the group “Libraries” in the “Program Elements” list box, the
STEP 7 standard libraries and any libraries you have created will be listed.

In this way you can include whole blocks in your network and program calls
for other blocks very quickly.

You can also call multiple instances as Ladder elements if you have defined
them in the variable declaration table. To do this, select the menu command
Insert �Program Element. In the list box of the Ladder elements, you will
find the group “Multiple Instances” under which all declared multiple
instances are listed.

Calling Multiple
Instances

Creating Logic Blocks

3-21
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

3.10 Creating Parallel Branches

To create OR instructions in the Ladder programming language, you need to
create parallel branches.

Use the following guidelines to edit parallel branches:

� Draw OR branches from left to right

� Parallel branches are opened downwards and closed upwards

� Open a parallel branch with the menu command Insert � LAD Element...
� Open Branch, with function key F8 or with the corresponding button in
the toolbar.

� Close a parallel branch with the menu command Insert � LAD
Element... � Close Branch, with function key F9 or with the
corresponding button in the toolbar.

� A parallel branch is always opened in front of the selected element

� A parallel branch is always closed after the selected element

� To delete a parallel branch, delete all the elements in the branch. When
the last element in the branch is deleted, the OR branch is automatically
removed.

If you want to open a new branch, select the starting point of the branch
below which you want to insert a new branch. You create the new branch
with F8 (see Figure 3-13).

To create a closed branch, select the element in front of which you want to
open a parallel branch. Open the parallel branch with F8, insert the Ladder
elements and close the branch again with F9.

When you close parallel branches, the necessary empty elements are added.
If necessary, the branches are arranged so that branch crossovers are avoided.
If you close the branch directly from the parallel branch, the branch is closed
after the next possible Ladder element.

Figure 3-13 shows an example of how to create a parallel branch using only
function keys and buttons in the toolbar.

Application

Guidelines

Creating New
Branches

Creating a Closed
Branch

Creating Logic Blocks

3-22
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

M2.0 I1.0

M2.0 I1.0

M2.0 I1.0

??.?

I1.0

??.?

M2.0

Step 1.

Step 2.

Step 3.

Step 4.

or <F8>

or <F9>

or <F2>

Figure 3-13 Creating Parallel Branches in a Ladder Network

You can separate a closed parallel branch by cutting out the intersection point
where the parallel branch rejoins the main branch.

Separating Closed
Parallel Branches

Creating Logic Blocks

3-23
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

3.11 Editing Addresses and Parameters

The Block Editor uses the character string ??:? as placeholders for addresses
and parameters when you insert a Ladder instruction. All addresses and
parameters must be completed correctly for an executable code section. The
exceptions to this are FBs and SFBs or timer and counter boxes that do not
need to have all parameters assigned. Addresses and parameters can be
entered in absolute or symbolic form.

To edit an address or a parameter, open the corresponding text box by
clicking the placeholders ??.?. When you have completed your entry its
syntax is checked. If errors are found, the address or parameter is displayed
in red and an error message appears in the status bar. If the syntax is correct,
the next text box which has not yet been edited is opened.

m1.6??.?

Step 1. Step 2.

M1.6

Step 3.

Figure 3-14 Entering Addresses for Ladder Instructions

As you become familiar with the editing tools in Ladder, you can enter all
elements in a network first, and later assign the address or a parameter, to
each element.

Because they are marked in red, errors are easy to recognize. To allow you to
navigate more easily to errors located outside the currently visible screen
section, the Editor has two search functions: Edit � Go To... � Previous
Error/Next Error which can also be activated from buttons in the toolbar.

The error search extends beyond the network. This means errors are found
throughout the entire code section and not just within the network or
currently visible section of the program. If you activate the status bar with
the menu command View � Status Bar, information about the errors will be
displayed in the status bar.

You can correct errors and make changes in the overwrite mode (see
Section 3.13).

Uses

Procedure

Debugging

Creating Logic Blocks

3-24
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

3.12 Symbolic Addressing

In the Ladder programming language you can either enter absolute addresses,
parameters and block names, or use symbols. Using the menu command
View � Symbolic Representation, you can switch between symbolic and
absolute addressing.

To use shared symbols, you must enter them in the symbol table as follows:

� Open the symbol table with the menu command Options � Symbol
Table.

� Using the menu command Options � Edit Symbols open a dialog box in
which you can define and modify individual symbols.

For further information about editing symbols, refer to the User Manual
/231/.

In most cases it is not necessary to define whether a symbol is local or
shared. However, in cases where confusion might arise, for example if the
same symbol is being used in both the symbol table and the variable
declaration table, you can distinguish between the symbols as follows:

� Symbols from the symbol table are shown between inverted commas “..” .

� Symbols from the variable declaration table of the block are preceded by
the hash character “#” .

You do not enter the ID with “..” or “#” yourself. If the symbolic address is
contained in the variable declaration table or in the symbol table, the ID is
completed after the syntax check.

To make programming with symbolic addressing easier, you can display the
absolute address and symbol comment for a symbol. You display this
information with the menu command View � Symbol Information. If you
choose this option, a text box is displayed after each network. You cannot
edit in this view. Any modifications you require must be made in the symbol
table or the variable declaration table.

Using Symbolic
Addressing

Specifying
Symbols

Representation

Symbol
Information
Made Easy

Creating Logic Blocks

3-25
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

PROJ1\...\FB53-<Offline>

”lampon””sensor1” ”button2”

Symbol Information:

I0.0 sensor1 Temperature exceeded
I1.2 button2 Acknowledge button
Q4.0 lampon Alarm signal

Network 1 : Output alarm

An alarm is output when the temperature limit is exceeded and the
message is not acknowledged

Figure 3-15 Symbol Information in Ladder

When you print the block, the printout is the same as the current screen
followed by the corresponding instruction and symbol comments.

Note

When you download a program to the CPU, the symbol table is not
downloaded. This means that when you are editing a user program whose
original is not on the programming device or PC, the original symbols are no
longer available.

Creating Logic Blocks

3-26
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

3.13 Editing in the Overwrite Mode

In the Block Editor you can change addresses or parameters conveniently
using the overwrite mode. You toggle between insert and overwrite mode
using the INSERT key. You then overwrite your entries in the text boxes for
addresses or parameters.

The overwrite mode allows you to overwrite Ladder elements of the same
type. All boolean logic connections and parameters are retained.

This has the advantage that you do not have to enter the addresses and
parameters again. The Ladder element you want to overwrite can only be
replaced by a Ladder element of the same type. For example, you can
exchange a normally open contact for a normally closed contact, an R/S
flipflop for an S/R flipflop or exchange one timer for another.

To overwrite an existing Ladder element, select it and switch to the overwrite
mode with the INSERT key. The Ladder element is overwritten as soon as you
insert another Ladder element of the same type.

I 0.0

I 0.1

I 1.1

I 1.2

I 0.2

Q 1.0S_PULSE

S

R

TVS5T#10s BI

BCD

MW 2

MW 4

T1

I 0.0

I 0.1

I 1.1

I 1.2

I 0.2

Q 1.0S_ODT

S

R

TVS5T#10s BI

BCD

MW 2

MW 4

T1

Q

Overwrite

Q

Figure 3-16 Overwriting Boxes

Overwriting
Addresses and
Parameters

Overwriting
Ladder Elements

Creating Logic Blocks

3-27
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

If at one point in a branch one parallel branch closes and another one opens,
this is called a junction. You can split a junction by selecting it at the lower
or upper junction point and inserting a Ladder element. The junction is split
and the Ladder element inserted.

Q2.4I6.0

M4.6

M4.0

I8.0

Q2.4I6.0

M4.6

M4.0

I8.0

??.?

Overwrite

Figure 3-17 Splitting a Junction

Note

You can correct comments and titles in overwrite mode.

Special Case:
Splitting a
Junction

Creating Logic Blocks

3-28
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

3.14 Entering Titles and Comments

In the code section of a logic block, you can enter information such as block
and network titles, and block and network comments. These entries are
optional and not essential to the program execution.

To enter a block title or network title, position the cursor on the three
question marks to the right of the block name or network name (for example,
network 1 : ???). A text box is then opened in which you enter the title. This
can be up to 64 characters long.

Network 2: ???

Network 2:

Mouse click

Network title

1.

2.

Figure 3-18 Entering Block Titles

Using the View � Comment menu command, you can display or hide the
gray comment field. When you double-click the comment field, a text box
appears which you can use to enter comments. You have 64 Kbytes per block
available for block comments and network comments.

???

Comment for network or block

1.

2.
Mouse click

Figure 3-19 Entering Comments

Note

When you download a block to the CPU, the comments are not downloaded.
If you then upload a block from the CPU, whose original is not on your
programming device or PC, you cannot view or edit the original comments.

Overview

Entering Block
Titles and Network
Titles

Entering
Comments

Creating Logic Blocks

4-1
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Creating Data Blocks and User-Defined
Data Types

Data blocks are an important part of your user program since they contain all
its data. This chapter explains how to create data blocks.

User-defined data types (UDTs) are not essential for programming. However,
they can be real time-savers in situations where you have to write programs
for similar tasks.

Section Description Page

4.1 Creating Data Blocks - Overview 4-2

4.2 Selecting a Method 4-4

4.3 Editing the Declaration Table 4-5

4.4 Editing Actual Data Values 4-6

4.5 Creating User-Defined Data Types (UDTs) 4-8

In This Chapter

Chapter Overview

4

4-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

4.1 Creating Data Blocks – Overview

Data blocks (DBs) are used to handle data which is why they do not have a
code section. Programming data blocks involves the following :

� Declaration table: The declaration table is where you specify the data
structure of the data block.

� Block properties: These include extra information such as time stamp,
programming language and path name, which is all entered by the system
itself. You can also add information about the name, family, version and
author and you can assign system attributes for blocks (see Chapter 5).

A user program can have the following data blocks:

� Shared DBs can be accessed by all logic blocks in the program. The data
remains stored in the data block even when it has been closed.

If you require several shared DBs of the same data structure, you can
create them with the help of a UDT. These are data blocks with an
associated user-defined data type.

� Instance DBs are associated with specific function blocks and are
structured according to the declaration table of the FB. You can only
create an instance DB if the corresponding function block exists. They are
data blocks with an associated function block.

Depending on the type of data block you want to create, different methods
are used.

Shared data blocks can be created as follows:

� Define the structure for a single data block. For this you must define the
variables and data types in the desired order. This structure only applies to
this DB.

� Define the structure for the data block with the help of a user-defined data
type. In this case the UDT structure defines the data structure of the DB.
A user data type can be assigned to a number of data blocks.

Create an instance data block and then:

� Assign an existing function block to the data block. In this case the
declaration section of the function block defines the structure of the data
block. A number of instance data blocks can be assigned to one function
block.

Data Blocks

Types of Data
Blocks

Methods of
Creating Data
Blocks

Creating Data Blocks and User-Defined Data Types

4-3
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Note

When you change the declaration section of an FB, you have to recreate all
the instance data blocks associated with it in order to ensure their
compatibility. The same applies to data blocks which have been created on
the basis of a UDT.

Create a data block (DB) in the SIMATIC Manager or in the Editor

Edit the block properties.

Save the block.

LAD Editor

Edit the declaration table.

data block.
... Declaration for a single ... Assign to a UDT. ... Assign the

DB to an FB.

Instance DBShared DB

Select the desired method ...

Figure 4-1 Programming Procedure for Creating Data Blocks

Creating Data Blocks and User-Defined Data Types

4-4
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

4.2 Selecting a Method

When you create a DB in the SIMATIC Manager or in the LAD Editor, you
must select the method you want to use. You are prompted to select the
method in a dialog box.

New Data Block

Cancel

Create

Reference:

OK Help

Data Block

Data Block Referencing a User-Defined Data Type

Data Block Referencing a Function Block

Block: DB7

Programming Tool: DB Editor

FB6
FB88
FB101

Figure 4-2 Selecting a Method and Assigning an FB/UDT

When creating a DB based on either a UDT or as an instance data block of an
FB, you make your selection in the list box that displays all existing UDTs
and FBs. The UDT or FB must already exist.

How you proceed from here depends on whether you are creating the DB by
assigning it or by creating a single declaration.

� Since the assigned UDT or FB defines the structure of the data block, you
have actually already created the new data block. The declaration table is
displayed on your screen, but no further changes can be made to it.

� If you are defining the structure of a shared data block, you must now edit
the declaration table, declaring the variable names and data type and, if
you require, the initial value and comment (see Section 4.3).

Procedure

How to Proceed

Creating Data Blocks and User-Defined Data Types

4-5
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

4.3 Editing the Declaration Table

When you create single shared data blocks or UDTs, you must declare their
elements (variables) and their data types. For this you use the declaration
table in the declaration view. When working with data blocks, you change to
this view with the menu command View � Declaration View.

This does not apply to data blocks assigned to a UDT or FB since the
declaration is already defined by the UDT or FB.

The declaration view of a data block shows the addresses, the declaration
types (only for instance DBs), the variable names (symbols), initial values
and comments. Figure 4-3 shows an example:

DB15 - <Offline>

Address Symbol Data Type Initial Value Comment

speed

runtime

motor_on

STRUCT

INT

DINT

BOOL

100

L#0

0.0

+0.0

+2.0

+6.0

+10.0

history REAL

motor_off BOOL+10.1

END_STRUCT

FALSE

=12.0

0.000000e+000

FALSE

Maximum RPM

Figure 4-3 Declaring a Data Block

The columns have the same significance as those in the declaration table for
logic blocks (see Section 3.3).

To enter a new declaration, type in the required declaration type, variable
name, data type, initial value (optional) and comment (optional). You can
move the cursor from one cell to the next using the TAB or RETURN keys. At
the end of each row, an address is allocated to the variable.

The syntax is checked after each cell has been edited and errors are shown in
red. You can continue to make your entries and correct any errors later.

Note

Editing in the declaration view is the same as editing the variable declaration
table of logic blocks (see Section 3.4). The editing and input procedures are
identical and you should also proceed in the same way when entering arrays
or structures.

Purpose of the
Declaration View

Structure of the
Table in the
Declaration View

Procedure

Creating Data Blocks and User-Defined Data Types

4-6
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

4.4 Editing Actual Data Values

When you create and save a data block for the first time, the declared
(optional) initial value is automatically assumed as the actual value of the
variable. When it accesses the data block, the user program continues to use
this as the actual value, unless you explicitly specify a new actual value for
the variable in the user program.

The actual values of the variables are changed by the logic blocks writing to
them while the CPU program is being executed. You can display and change
the actual values of variables yourself.

You must switch to the data view to display and edit actual data values in
data blocks. Open a data block and use the menu command View � Data
View to switch to the data view.

The only difference between the data view and the declaration view of a data
block is the additional column “Actual Value”. In the data view, the elements
of variables with a complex data type are displayed individually and with
their complete symbolic name, so that each of their actual values can be
displayed and edited (see Figure 4-4).

DB17 - <Offline>

Address Symbol Type Initial Value Comment

motor.speed

motor.runtime

motor.history

motor.motor_off

INT

DINT

REAL

BOOL

100

L#0

0.000000e+000

0.0

2.0

6.0

10.0

10.1

motor.motor_on BOOL

field[1] INT12.0

field[2] INT

0

14.0

FALSE

FALSE

Maximum RPM

field[3] INT16.0

0

0

Actual Value

89

L#0

0.000000e+000

7

TRUE

FALSE

4

8

Figure 4-4 Data Block in the Data View

The displayed actual value is either the value that the variable had when you
opened the data block or the most recently modified and saved value.

Note

If you open data blocks online, the actual value is not updated cyclically.

Initial Value –
Actual Value

Data View of Data
Blocks

Displayed Actual
Value

Creating Data Blocks and User-Defined Data Types

4-7
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

You can overwrite the actual values in the “Actual Value” column. The
values you enter must be compatible with the data type.

Using the menu command Edit � Initialize Data Block you can reinitialize
the whole data block. This overwrites the actual values of the variables with
the initial values which you declared in the declaration view or those which
you declared in the FB or UDT.

The actual values are only activated and become valid when you save them.

� To save the actual data values that you changed offline, select the menu
command File � Save or click on the “Save” button in the toolbar. Even if
the data block was opened online, only the data block that exists offline
will be saved.

� To download the modified data values to the CPU, select the menu
command PLC � Download or click the button in the toolbar.

Changing and
Reinitializing
Actual Values

Saving Actual
Values

Creating Data Blocks and User-Defined Data Types

4-8
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

4.5 Creating User-Defined Data Types (UDTs)

User-defined data types are data structures that you create yourself and save
as blocks. Once defined, you can use them under their absolute or symbolic
block names, throughout the entire user program. You can use UDTs as
follows:

� Like elementary or complex data types as the data type in the declaration
of logic blocks (FCs, FBs, OBs) or in data blocks (DBs).

� As templates for creating data blocks with the same data structure.

Figure 4-5 shows the basic procedure for creating a user data type:

Create a block for a UDT in the
SIMATIC Manager or in the Editor

Edit the block properties

Save the block

Edit the declaration table

LAD Editor

Figure 4-5 Creating a User Data Type

After creating or opening a UDT in the SIMATIC Manager or the
incremental editor, a declaration table is displayed in which you declare the
structure of the data type.

Overview

Procedure

Editing a
Declaration Table

Creating Data Blocks and User-Defined Data Types

4-9
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

UDT56 - <Offline>

Address Symbol Data Type Initial Value Comment

speed

runtime

motor_on

STRUCT

INT

DINT

BOOL

100

L#0

0.0

+0.0

+2.0

+6.0

+10.0

history REAL

motor_off BOOL+10.1

END_STRUCT

FALSE

=12.0

0.000000e+000

FALSE

Maximum RPM

Figure 4-6 Declaring a UDT

The first and the final row of the declaration view of a UDT are already
allocated and display the key words STRUCT and END_STRUCT, which
define the beginning and end of a UDT. These rows cannot be edited.

Initially, two empty rows are displayed to allow you to declare your
variables. You must enter the variable name and data type. Initial value or
comments are optional. You can create more empty rows using the menu
command Insert � Declaration Row � Before Selection / After Selection.

Note

Editing this declaration table is similar to editing the declaration table of
logic and data blocks.

Creating Data Blocks and User-Defined Data Types

4-10
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Creating Data Blocks and User-Defined Data Types

5-1
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Editing the Block Properties and Testing
the Program

After you have created and edited the data blocks and logic blocks, you
should check and edit the block properties. They contain information that
identifies the block and indicates how and when it was created. This
information can be useful when debugging a program.

The Ladder Editor allows you to test a single block while it is being executed
in a user program on the CPU. You can follow the signal flow within
networks on the screen. This program test, known as Program Status, helps
you check various processes and eliminate errors.

Section Description Page

5.1 Editing the Block Properties 5-2

5.2 Testing your Ladder Program - Overview 5-5

5.3 Setting the Program Status 5-6

5.4 Setting the Trigger Conditions 5-7

5.5 Choosing a Test Environment and Starting/Stopping the
Program Status

5-8

In This Chapter

Chapter Overview

5

5-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

5.1 Editing the Block Properties

The block properties contain additional information about the block.
Optional data such as name, family, version and author of the block can be
entered here. The properties also include other statistical data and further
information, automatically entered by the system, which cannot be edited by
the user (see Figure 5-1). You can also assign system attributes to the block.

The block properties provide you with important information about the block
type, memory requirements and time of the last modification. This can be
useful when trying to track down errors, such as insufficient memory and
time stamp conflicts.

The block properties can be edited using a dialog box.

� In the SIMATIC Manager, select the block and select the menu command
Edit � Object Properties.

� Select File � Properties when opening a block in the Ladder Editor.

Properties - Block

System AttributesGeneral–Part2General–Part1

CancelOK Help

Internal ID: FB6 Language: LAD

Type: Function Block (FB)

Symbol: Symbol from traffic light

Symbol Comment: Traffic light on Main Street

Project Path: Traffic\Traffic light\User Program\FB6

Name (Header): Traffic Version: 01.00

Family: Traffic Block Version: 3.000

Author: Meier Multiple Instance DB

Last Modified:

Code: 25.10.96 15:23:41.190
Interface: 25.10.96 15:23:41.190

Figure 5-1 Setting the Display of the Program Status in Ladder

In the tabbed pages “General – Part 1”, “General Part – 2”, and “System
Attributes”, you can make a number of entries including the following:

Overview

Procedure

Editing the Block Properties and Testing the Program

5-3
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Blocks with a name and family are easier to classify. For example you could
allocate some blocks to the “Closed-Loop Controller” family, showing that
they are all used for programming closed-loop controllers.

When the block is called later in the code section of another Ladder block,
the benefits of this information become apparent: the family and name of the
block are displayed in the “Program Elements” list box when this block is
selected, so that you can identify the purpose of the block more easily.

This information shows you which STEP 7 version was used to create a
block. Version 1 blocks must be converted before they can be incorporated in
a program of version 3. You can achieve this in the SIMATIC Manager by
using the menu command File � Open Old Version 1 Project

Blocks created with version 1 cannot be used in conjunction with multiple
instances. They must be decompiled into source files and then be compiled
into version 3 blocks. For further information, refer to the User Manual
/231/.

Block attributes in the “General – Part 2” tabbed page include entries such as
the following:

� The attribute “DB write-protected in PLC” means that the block is
write-protected. This is useful for data blocks containing constant values
that must not be changed. The DB must exist as an STL source file.

� The attribute “Know How Protect” indicates a protected block and has
the following effects:

– The code section cannot be viewed.

– The variable declaration table does not display the temporary and
static variables.

– STL source files cannot be generated from the block.

– Block properties cannot be edited.

� The attribute “Standard block” means a protected standard Siemens
block. It appears on the bottom left of the page.

� The attribute “Unlinked” only occurs with to data blocks. It indicates that
the data block cannot be downloaded from the load memory to the work
memory of the CPU. Data blocks in the load memory can only be
accessed using SFCs which copy the content of the data blocks to the
work memory. A more effective use of the work memory is achieved as it
only contains relevant data during the run time.

Block Name and
Family

Block Release

Block Attributes

Editing the Block Properties and Testing the Program

5-4
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Note

Attributes such as block protection, write protection and unlinked can only
be added to the block if it is being programmed as a source file in STL. If
you have created your block in Ladder, you must change to the programming
language STL using the menu command View � STL. You must then convert
the block into a source file before entering these attributes. Once the source
files are compiled into blocks the blocks are protected according to the
attributes you have selected.

Further information can be found in the STL Reference Manual /232/.

To configure the process control and process diagnostics, you can assign the
following system attributes in the “System Attributes” tabbed page.

Table 5-1 System Attributes for Process Control Configuration

Attribute Value When to Assign the Attribute Permitted Block
Type

S7_m_c true, false When the block will be manipulated or
monitored from an operator panel.

FB, SFB

S7_tasklist ’taskname1’,
’taskname2’, etc.

When the block will be called in organization
blocks other than in cyclic OBs (for example in
error or startup OBs).

FB, SFB, FC, SFC

S7_block-
view

big, small To specify whether the block is displayed in large
or small format.

FB, SFB, FC, SFC

Table 5-2 System Attributes for Process Diagnostics

Attribute Value When to Assign the Attribute Permitted Block
Type

S7_pdiag true, false When the block will generate information
relevant to process diagnostics.

FB, FC, OB, DB

S7_pdiag_
unit

true, false When the block will generate information
relevant to process diagnostics and a unit of
measurement will be monitored.

UDT

S7_pdiag_
motion

true, false When the block will generate information
relevant to process diagnostics and a motion will
be monitored.

UDT

System Attributes
for Blocks

Editing the Block Properties and Testing the Program

5-5
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

5.2 Testing your Ladder Program - Overview

You can test your Ladder program by visually displaying the signal flow
within the network of a block. The display of the program is updated
cyclically.

You can only display the program status when the following conditions are
met:

� The block was saved and downloaded to the CPU without any errors.

� The CPU is in operation and the user program is running.

� You have opened the block online.

Figure 5-2 shows the basic procedure for monitoring the program status:

Open block online

Make settings for test display

Set trigger conditions (optional)

Select test environment

Start/stop test

Figure 5-2 Procedure for Testing Logic Blocks in Ladder

Test Method

Prior Conditions

Basic Procedure

Editing the Block Properties and Testing the Program

5-6
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

5.3 Setting the Program Status

Before starting the Ladder program test, you select the criteria you would
like to see displayed. To do this use the menu command Options �
Customize and open the “Ladder Logic” tabbed page.

LAD/STL/FBD

LAD/FBDSTLEditor

CancelOK Help

Create Block Source Files

Thin

Medium

Thick Select

For: Status fulfilled

18 (10-24)

Layout

DIN A4 Landscape

Element Representation

LAD: Deep (2D)

FBD: Deep (3D)Width of Address Field

Line/Color

Line Thickness Color

Figure 5-3 Setting the Display for the Program Status in Ladder

In this tabbed page, you now select the color and line thickness for the two
possible results:

� “Status not fulfilled”: the conditions along the current path have not been
fulfilled. No current is flowing (dotted line).

� “Status fulfilled”: the conditions along the current path have been
fulfilled. Current is flowing (solid line).

Procedure

Editing the Block Properties and Testing the Program

5-7
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

5.4 Setting the Trigger Conditions

By setting the trigger condition you select the call environment of the block
to be tested. The test will not take place unless the trigger condition is
fulfilled.

The trigger conditions can be set by using the menu command Debug � Call
Environment.

Block Call Environment

Cancel

Trigger Condition

OK Help

No Condition

Call Path 1st Block:

2nd Block:

3rd Block:

Block Status: FB6

Open Data Blocks

Global DB Number: DB6

Instance DB Number:

Figure 5-4 Setting the Trigger Conditions

The three possible settings have the following meanings:

� No trigger conditions: The call environment of the block being tested is
irrelevant. This means that if a block is called at various points during the
program, you will not be able to distinguish which status applied to which
call.

� Call path: This is the call path used for calling the block in order to
trigger a status display. You can enter three block nesting levels before the
tested block is reached.

� Open data blocks: In this case the call environment is defined by one or
two data blocks. A status display is triggered when the block currently
being tested is called in association with one of these data blocks.

Background

Procedure

Trigger Condition
Settings and their
Meanings

Editing the Block Properties and Testing the Program

5-8
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

5.5 Choosing a Test Environment and Starting/Stopping the Program
Status

There are two ways of testing your program online.

� The “process” test environment tests your program online, in a working
process. The status of the statements in programmed loops that are run
through more than once in the scan cycle is stopped at the return jump to
the start of the loop and is no longer updated while the loop is visible.
This mode causes the least load on the cycle.

� In the test environment “laboratory ” your program is also tested online
under laboratory conditions. In this case, however, the status of
statements in programmed loops that are run through more than once in
the scan cycle is shown after the end of each loop. This mode can take up
considerable scan time depending on the number of loop iterations and
the number of tested statements.

You can select the test environment using the menu command Debug � Test
Environment � Laboratory/Process.

The program status is started and stopped by using the command Debug �
Monitor. The program status is only displayed for the area currently visible
in the editor.

FB6-<Online>

Network 1

Network 2: Green for road traffic

#starter

#condition

#condition

#condition #g car

#t_next_red_car #t_dur_r_car

Network 3: Start duration of yellow for road traffic

#condition

FB6 : Traffic Light

#t_dur_y_car

SD

S5T#3S
S5T#3S

Address Decl. Symbol Data Type Initial Value Comment

dur_g_p

del_r_p

starter

S5TIME

S5TIME

BOOL

S5T#0MS

S5T#0MS

FALSE

in

in

in

0.0

2.0

4.0

Figure 5-5 Program Status in Ladder (Example)

Selecting a Test
Environment

Starting and
Stopping the
Program Status

Editing the Block Properties and Testing the Program

5-9
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Activating the test mode increases the scan time. If the set scan time is
exceeded, the CPU switches to STOP unless you have programmed OB80.

You can display and check the currently set scan time using the menu
command PLC � Module Information . If necessary, you can change the
maximum scan time in the CPU properties for test purposes when assigning
hardware parameters.

Checking the
Scan Time

Editing the Block Properties and Testing the Program

5-10
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Editing the Block Properties and Testing the Program

Configuration and
Elements of Ladder Logic 6

Addressing 7

Bit Logic Instructions 8

Timer Instructions 9

Counter Instructions 10

Integer Math Instructions 11

Floating-Point Math Instructions 12

Comparison Instructions 13

Transfer and
Conversion Instructions 14

Word Logic Instructions 15

Shift and Rotate Instructions 16

Data Block Instructions 17

Jump Instructions 18

Status Bit Instructions 19

Program Control Instructions 20

Part 2:
Language Description

5-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

6-1
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Configuration and Elements of Ladder
Logic

Section Description Page

6.1 Elements and Box Structure 6-2

6.2 Boolean Logic and Truth Tables 6-6

6.3 Significance of the CPU Registers in Instructions 6-12

Chapter Overview

6

6-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

6.1 Elements and Boxes

Ladder instructions consist of elements and boxes which are connected
graphically to form networks. The elements and boxes can be classified into
the following groups:

STEP 7 represents some ladder logic instructions as individual elements that
need no address or parameters (see Table 6-1).

Table 6-1 Ladder Logic Instruction as Elements without Addresses or Parameters

Element Name Section in This Manual

NOT Invert Power Flow 8.6

STEP 7 represents some ladder logic instructions as individual elements for
which you need to enter an address (see Table 6-2). For more information on
addressing, see Chapter 7.

Table 6-2 Ladder Logic Instruction as an Element with an Addres

Element Name Section in This Manual

<Address>
Normally Open Contact 8.2

STEP 7 represents some ladder logic instructions as individual elements for
which you need to enter an address and a value (such as a time or count
value, see Table 6-3).
For more information on addressing, see Chapter 7.

Table 6-3 Ladder Logic Instruction as an Element with an Address and Value

Element Name Section in This Manual

SS

<Address>

Value

Retentive On-Delay Timer
Coil

8.16

Ladder
Instructions

Instructions as
Elements

Instructions as
Elements with
Address

Instructions as
Elements with
Address and Value

Configuration and Elements of Ladder Logic

6-3
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

STEP 7 represents some ladder logic instructions as boxes with lines
indicating inputs and outputs (see Table 6-4). The inputs are on the left side
of the box; the outputs are on the right side of the box. You fill in the input
parameters. For the output parameters, you fill in locations where the STEP 7
software can place output information for you. You must use the specific
notation of the individual data types for the parameters.

The principle of the enable in (EN) and enable out (ENO) parameters is
explained below. For more information on input and output parameters, see
the description of each instruction in this manual.

Table 6-4 Ladder Logic Instruction as Box with Inputs and Outputs

Box Name Section in This Manual

DIV_R

IN1

EN

IN2 OUT

ENO
Divide Real 12.5

Passing power to (activating) the enable input (EN) of a ladder logic box
causes the box to carry out a specific function. If the box is able to execute
its function without error, the enable output (ENO) passes power along the
circuit. The ladder logic box parameters EN and ENO are of data type BOOL
and can be in memory area I, Q, M, D, or L (see Tables 6-5 and 6-6).

EN and ENO function according to the following principles:

� If EN is not activated (that is, if it has a signal state of 0), the box does
not carry out its function and ENO is not activated (that is, it also has a
signal state of 0).

� If EN is activated (that is, if it has a signal state of 1) and the box to
which EN belongs executes its function without error, ENO is also
activated (that is, it also has a signal state of 1).

� If EN is activated (that is, if it has a signal state of 1) and an error occurs
while the box to which EN belongs is executing its function, ENO is not
activated (that is, its signal state is 0).

You cannot place a box or an inline coil in a ladder logic rung which does not
start at the left power rail. The Compare instructions are an exception.

Most of the addresses in LAD relate to memory areas. The following table
shows the types and their functions.

Instructions as
Boxes with
Parameters

Enable In and
Enable Out
Parameters

Restrictions for
Boxes and Inline
Coils

Memory Areas and
Their Functions

Configuration and Elements of Ladder Logic

6-4
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Table 6-5 Memory Areas and Their Functions

Name of Area Function of Area
Access to Area

Name of Ar ea Function of Ar ea
via Units of the following size: Abbrev.

Process-image
input

At the beginning of the scan cycle, the operating
system reads the inputs from the process and
records the values in this area. The program can
use these values in its cyclic processing.

Input bit
Input byte
Input word
Input double word

I
IB
IW
ID

Process-image
output

During the scan cycle, the program calculates
output values and places them in this area. At
the end of the scan cycle, the operating system
reads the calculated output values from this area
and sends them to the process outputs.

Output bit
Output byte
Output word
Output double word

Q
QB
QW
QD

Bit memory This area provides storage for interim results
calculated in the program.

Memory bit
Memory byte
Memory word
Memory double word

M
MB
MW
MD

I/O:
external input

This area enables your program to have direct
access to input and output modules (that is,
peripheral inputs and outputs).

Peripheral input byte
Peripheral input word
Peripheral input double word

PIB
PIW
PID

I/O:
external output

Peripheral output byte
Peripheral output word
Peripheral output double word

PQB
PQW
PQD

Timer Timers are function elements of Ladder
programming. This area provides storage for
timer cells. In this area, clock timing accesses
time cells to update them by decrementing the
time value. Timer instructions access time cells
here.

Timer (T) T

Counter Counters are function elements of Ladder
programming. This area provides storage for
counters. Counter instructions access them here.

Counter (C) C

Data block This area contains data that can be accessed
from any block. If you need to have two
different data blocks open at the same time, you
can open one with the statement “OPN DB”
and one with the statement “OPN DI”. The
notation of the addresses, e.g. L DBWi and
L DIWi, determines the data block to be
accessed.
Whil h “OPN DI”

Data block opened with the statement
“OPN DB”:

Data bit
Data byte
Data word
Data double word

DBX
DBB
DBW
DBD

While you can use the “OPN DI” statement to
open any data block, the principal use of this
statement is to open instance data blocks that are
associated with function blocks (FBs) and
system function blocks (SFBs). For more
information on FBs and SFBs, see the STEP 7
Program Design Manual /234/ and the STEP 7
User Manual /231/.

Data block opened with the statement
“OPN DI”:

Data bit
Data byte
Data word
Data double word

DIX
DIB
DIW
DID

Local data This area contains temporary data that is used
within a logic block (FB, or FC). These data are
also called dynamic local data. They serve as an
intermediate buffer. When the logic block is
finished, these data are lost. The data are
contained in the local data stack (L stack).

Temporary local data bit
Temporary local data byte
Temporary local data word
Temporary local data double word

L
LB
LW
LD

Configuration and Elements of Ladder Logic

6-5
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Table 6-6 lists the maximum address ranges for various memory areas. For
the address range possible with your CPU, refer to the appropriate S7-300
CPU manual.

Table 6-6 Memory Areas and Their Address Ranges

Name of Area
Access to Area

Maximum Address RangeName of Area
via Units of the Following Size: Abbrev.

Maximum Address Range

Process-image inputInput bit
Input byte
Input word
Input double word

I
IB
IW
ID

0.0 to 65,535.7
0 to 65,535
0 to 65,534
0 to 65,532

Process-image
output

Output bit
Output byte
Output word
Output double word

Q
QB
QW
QD

0.0 to 65,535.7
0 to 65,535
0 to 65,534
0 to 65,532

Bit memory Memory bit
Memory byte
Memory word
Memory double word

M
MB
MW
MD

0.0 to 255.7
0 to 255
0 to 254
0 to 252

Peripheral I/O:
External input

Peripheral input byte
Peripheral input word
Peripheral input double word

PIB
PIW
PID

0 to 65,535
0 to 65,534
0 to 65,532

Peripheral I/O:
External output

Peripheral output byte
Peripheral output word
Peripheral output double word

PQB
PQW
PQD

0 to 65,535
0 to 65,534
0 to 65,532

Timer Timer (T) T 0 to 255

Counter Counter (C) C 0 to 255

Data block Data block opened with the statement DB
 ––(OPN)

Data bit
Data byte
Data word
Data double word

DBX
DBB
DBW
DBD

0.0 to 65,535.7
0 to 65,535
0 to 65, 534
0 to 65,532

Data block opened with the statement DI
 ––(OPN)

Data bit
Data byte
Data word
Data double word

DIX
DIB
DIW
DID

0.0 to 65,535.7
0 to 65,535
0 to 65, 534
0 to 65,532

Local data Temporary local data bit
Temporary local data byte
Temporary local data word
Temporary local data double word

L
LB
LW
LD

0.0 to 65,535.7
0 to 65,535
0 to 65, 534
0 to 65,532

Configuration and Elements of Ladder Logic

6-6
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

6.2 Boolean Logic and Truth Tables

A ladder logic program tracks power flow between power rails as it passes
through various inputs, outputs, and other elements and boxes. Many Ladder
instructions work according to the principles of Boolean logic.

Each of the Boolean logic instructions checks the signal state of an electrical
contact for 0 (not activated, off) or 1 (activated, on) and produces a result
based on the findings. The instruction then either stores this result or uses it
to perform a Boolean logic operation. The result of the logic operation is
called the RLO. The principles of Boolean logic are demonstrated here on
the basis of normally open and normally closed contacts.

Figure 6-1 shows two conditions of a relay logic circuit with one contact
between a power rail and a coil. The normal state of this contact is open. If
the contact is not activated, it remains open. The signal state of the open
contact is 0 (not activated). If the contact remains open, the power from the
power rail cannot energize the coil at the end of the circuit. If the contact is
activated (signal state of the contact is 1), power will flow to the coil.

The circuit on the left in Figure 6-1 shows a normally open control relay
contact as it is sometimes represented in relay logic diagrams. For the
purpose of this example, the circuit on the right indicates that the contact has
been activated and is therefore closed.

Power Rail

Normally Open
Contact

Coil

Í
Í

Standard Representation Representation Indicating
Activated Contact

Figure 6-1 Relay Logic Circuit with Normally Open Control Relay Contact

You can use a Normally Open Contact instruction (see Section 8.2) to check
the signal state of a normally open control relay contact. By checking the
signal state, the instruction determines whether power can flow across the
contact or not. If power can flow, the instruction produces a result of 1; if
power cannot flow, the instruction produces a result of 0 (see Table 6-7). The
instruction can either store this result or use it to perform a Boolean logic
operation.

Power Flow

Normally Open
Contact

Configuration and Elements of Ladder Logic

6-7
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Figure 6-2 shows two representations of a relay logic circuit with one contact
between a power rail and a coil. The normal state of this contact is closed. If
the contact is not activated, it remains closed. The signal state of the closed
contact is 0 (not activated). If the contact remains closed, power from the
power rail can cross the contact to energize the coil at the end of the circuit.
Activating the contact (signal state of the contact is 1) opens the contact,
interrupting the flow of power to the coil.

The circuit on the left in Figure 6-2 shows a normally closed control relay
contact as it is sometimes represented in relay logic diagrams. For the
purpose of this example, the circuit on the right indicates that the contact has
been activated and is therefore open.

Power Rail

Normally
Closed
Contact

Coil

Standard Representation Representation Indicating
Activated Contact

Figure 6-2 Relay Logic Circuit with Normally Closed Control Relay Contact

You can use a Normally Closed Contact instruction (see Section 8.3) to check
the signal state of a normally closed control relay contact. By checking the
signal state, the instruction determines whether power can flow across the
contact or not. If power can flow, the instruction produces a result of 1; if
power cannot flow, the instruction produces a result of 0 (see Table 6-7). The
instruction can either store this result or use it to perform a Boolean logic
operation.

Table 6-7 Result of Signal State Check by Normally Open and Normally Closed Contact

Instruction Result if Signal State of Contact is 1
(Contact Is Activated)

Result if Signal State of Contact Is 0
(Contact Is Not Activated)

1 (Available power can flow because the
normally open contact is closed.)

0 (Available power cannot flow because the
normally open contact is open.)

0 (Available power cannot flow because the
normally closed contact is opened.)

1 (Available power can flow because the
normally closed contact is closed.)

Normally Closed
Contact

Configuration and Elements of Ladder Logic

6-8
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Figure 6-3 shows a logic string of Ladder instructions that represents two
normally open contacts connected in series to a coil. The contacts are
labelled “I” for “input” and the coil is labelled “Q” for “output.” Activating a
normally open contact closes the contact. When both contacts in the logic
string are activated (that is, closed), power can flow from the power rail
across each contact to energize the coil at the end of the circuit. That is,
when both contact I 1.0 and I 1.1 are activated, power can flow to the coil.

In Diagram 1, both contacts are activated. Activating a normally open
contact closes the contact. Power can flow from the power rail across each
closed contact to energize the coil at the end of the circuit.

In Diagrams 2 and 3, because one of the two contacts is not activated, power
cannot flow all the way to the coil. The coil is not energized.

In Diagram 4, neither contact is activated. Both contacts remain open. Power
cannot flow to the coil. The coil is not energized.

I 1.0 I 1.1 Q 4.0

Diagram 1 Diagram 2

Diagram 3 Diagram 4

= activated = energized

I 1.0 I 1.1 Q 4.0

I 1.0 I 1.1 Q 4.0 I 1.0 I 1.1 Q 4.0

Figure 6-3 Using Normally Open Contact to Program Contacts in a Series

Programming
Contacts in Series

Configuration and Elements of Ladder Logic

6-9
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Figure 6-3 shows a ladder logic diagram that you can use to program two
normally open contacts connected in series to a coil. The first Normally Open
Contact instruction in the logic string checks the signal state of the first
contact in the series (input I 1.0) and produces a result based on the findings
(see Table 6-7). This result can be 1 or 0. A result of 1 means that the contact
is closed and any available power could flow across the contact; a result of 0
means that the contact is open, interrupting the flow of any power available
at the contact. The first Normally Open Contact instruction copies this 1 or 0
to a memory bit in the status word of the programmable logic controller. This
bit is called the “result of logic operation” (RLO) bit.

The second Normally Open Contact instruction in the logic string checks the
signal state of the second contact in the series (I 1.1) and produces a result
based on the findings (see Table 6-7). This result can be 1 or 0, depending on
whether the contact is closed or open. At this point, the second Normally
Open Contact instruction performs a Boolean logic combination. The
instruction takes the result it produced upon checking the signal state of the
second contact and combines this result with the value stored in the RLO bit.
The result of this combination (either 1 or 0) is stored in the RLO bit of the
status word, replacing the old value stored there. The Output Coil instruction
(see Section 8.4) assigns this new value to the coil (output Q 4.0).

The possible results of such a logic combination can be shown in a “truth
table.” In such a logic combination, 1 represents “true” and 0 represents
“false.” The possible Boolean logic combinations and their results are
summed up in Table 6-8, where “contact is closed” and “power can flow”
correspond to “true” and “contact is open” and “power cannot flow”
correspond to “false” (see Figure 6-3 for the contacts).

Table 6-8 Truth Table: And

If the result produced by
checking the signal state
of contact I 1.0 is

and the result produced
by checking the signal
state of contact I 1.1 is

the result of the logic
operation shown in
Figure 6-3 is

1 (contact is closed) 1 (contact is closed) 1 (power can flow)

0 (contact is open) 1 (contact is closed) 0 (power cannot flow)

1 (contact is closed) 0 (contact is open) 0 (power cannot flow)

0 (contact is open) 0 (contact is open) 0 (power cannot flow)

Using Normally
Open Contact in
Series

Configuration and Elements of Ladder Logic

6-10
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Figure 6-4 shows a logic string of Ladder instructions that represent two
normally open contacts connected in parallel to a coil. The contacts are
labelled “I” for “input” and the coil is labelled “Q” for “output.” Activating a
normally open contact closes the contact. When either one contact in the
logic string (I 1.1) or the other contact in the logic string (I 1.0) is activated
(that is, closed), power can flow from the power rail to energize the coil
(Q 4.0) at the end of the circuit. If both contacts in the logic string are
activated, power can flow from the power rail to energize the coil.

In Diagrams 1 and 2, one contact is activated and the other is not. Activating
a normally open contact closes the contact. Power can flow from the power
rail across the closed contact and continue to the coil at the end of the circuit.
Because the two contacts are connected in parallel, only one of the two
contacts need be closed for the power flow to continue to the coil at the end
of the circuit to energize the coil.

In Diagram 3, both contacts are activated, enabling the power to flow across
the two closed contacts to the end of the circuit to energize the coil.

In Diagram 4, neither contact is activated. Both contacts remain open. Power
cannot flow to the coil. The coil is not energized.

I 1.1

I 1.1

Diagram 1 Diagram 2

Diagram 3 Diagram 4

= activated = energized

I 1.0 Q 4.0

I 1.1

Q 4.0I 1.0

Q 4.0

I 1.1

I 1.0 Q 4.0I 1.0

Figure 6-4 Using Normally Open Contact to Program Contacts in Parallel

Programming
Contacts in
Parallel

Configuration and Elements of Ladder Logic

6-11
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

 Figure 6-4 shows a ladder logic diagram that you can use to program two
normally open contacts connected in parallel to a coil. The first Normally
Open Contact instruction in the logic string checks the signal state of the first
contact (input I 1.0) and produces a result based on the findings (see
Table 6-7). This result can be 1 or 0. A result of 1 means that the contact is
closed and any available power could flow across the contact; a result of 0
means that the contact is open, interrupting the flow of any power available
at the contact. The first Normally Open Contact instruction copies this 1 or 0
to a memory bit in the status word of the programmable logic controller. This
bit is called the “result of logic operation” (RLO) bit.

The second Normally Open Contact instruction in the logic string checks the
signal state of the second contact (I 1.1) and produces a result based on the
findings (see Table 6-7). This result can be 1 or 0, depending on whether the
contact is closed or open. At this point, the second Normally Open Contact
instruction performs a Boolean logic combination. The instruction takes the
result it produced upon checking the signal state of the second contact and
combines this result with the value stored in the RLO bit. The result of this
combination (either 1 or 0) is stored in the RLO bit of the status word,
replacing the old value stored there. The Output Coil instruction (see
Section 8.4) assigns this new value to the coil (output Q 4.0).

The possible results of such a logic combination can be shown in a “truth
table.” In such a logic combination, 1 represents “true” and 0 represents
“false.” The possible Boolean logic combinations and their results are
summed up in Table 6-9, where “contact is closed” and “power can flow”
correspond to “true” and “contact is open” and “power cannot flow”
correspond to “false” (see Figure 6-4 for the contacts).

Table 6-9 Truth Table: Or

If the result produced by
checking the signal state
of contact I 1.0 is

and the result produced
by checking the signal
state of contact I 1.1 is

the result of the logic
operation shown in
Figure 6-4 is

1 (contact is closed) 0 (contact is open) 1 (power can flow)

0 (contact is open) 1 (contact is closed) 1 (power can flow)

1 (contact is closed) 1 (contact is closed) 1 (power can flow)

0 (contact is open) 0 (contact is open) 0 (power cannot flow)

Using Normally
Open Contact in
Parallel

Configuration and Elements of Ladder Logic

6-12
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

6.3 Significance of the CPU Registers in Instructions

Registers help the CPU perform logic, math, shift, or conversion operations.
These registers are described below.

The two 32-bit accumulators are general purpose registers that you use to
process bytes, words, and double-words.

0781516232431

Accumulator (1 or 2)
Low wordHigh word

Low byteHigh byteLow byteHigh byte

Figure 6-5 Areas of an Accumulator

The status word contains bits that you can reference in the address of bit
logic instructions. The sections that follow the figure explain the significance
of bits 0 through 8.

28215... ...29 2427 26 25 2023 22 21

BR OSCC 1 CC 0 OV FCOR STA RLO

Figure 6-6 Structure of the Status Word

Value Meaning

0 Sets the signal state to 0

1 Sets the signal state to 1

x Changes the state

– State remains unchanged

Explanation

Accumulators

Status Word

Changing of the
Bits in the Status
Word

Configuration and Elements of Ladder Logic

6-13
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Bit 0 of the status word is called the first-check bit (FC bit, see Figure 6-6).
At the start of a ladder logic network, the signal state of the FC bit is always
0, unless the previous network ended with –––(SAVE). (The bar over the FC
indicates that it is negated, that is, always 0 at the beginning of a ladder logic
network.)

Each logic instruction checks the signal state of the FC bit as well as the
signal state of the contact that the instruction addresses. The signal state of
the FC bit determines the sequence of a logic string. If the FC bit is 0 (at the
start of a ladder logic network), the instruction stores the result in the result
of logic operation bit of the status word and sets the FC bit to 1. The
checking process is called a first check. The 1 or 0 that is stored in the RLO
bit after the first check is then referred to as the result of first check.

If the signal state of the FC bit is 1, an operation then links the result of its
signal state check with the RLO formed at the addressed contact since the
first check, and stores the result in the RLO bit.

A rung of ladder logic instructions (logic string) always ends with an output
instruction (Set Coil, Reset Coil, or Output Coil) or a jump instruction related
to the result of logic operation. Such an output instruction resets the FC bit
to 0.

Bit 1 of the status word is called the result of logic operation bit (RLO bit,
see Figure 6-6). This bit stores the result of a string of bit logic instructions or
math comparisons. The signal state changes of the RLO bit can provide
information related to power flow.

For example, the first instruction in a network of ladder logic checks the
signal state of a contact and produces a result of 1 or 0. The instruction stores
the result of this signal state check in the RLO bit. The second instruction in
a rung of bit logic instructions also checks the signal state of a contact and
produces a result. Then the instruction combines this result with the value
stored in the RLO bit of the status word according to the principles of
Boolean logic (see First Check above and Chapter 8). The result of this logic
operation is stored in the RLO bit of the status word, replacing the former
value in the RLO bit. Each subsequent instruction in the rung performs a
logic operation on two values: the result produced when the instruction
checks the contact, and the current RLO.

You can, for example, use a Boolean bit logic instruction on a first check to
assign the state of the contents of a Boolean bit memory location to the RLO
or trigger a jump.

First Check

Result of Logic
Operation

Configuration and Elements of Ladder Logic

6-14
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Bit 2 of the status word is called the status bit (STA bit, see Figure 6-6). The
status bit stores the value of a bit that is referenced. The status of a bit
instruction that has read access to the memory (Normally Open Contact,
Normally Closed Contact) is always the same as the value of the bit that this
instruction checks (the bit on which it performs its logic operation). The
status of a bit instruction that has write access to the memory (Set Coil, Reset
Coil, or Output Coil) is the same as the value of the bit to which the
instruction writes or, if no writing takes place, the same as the value of the bit
that the instruction references. The status bit has no significance for bit
instructions that do not access the memory. Such instructions set the status bit
to 1 (STA=1). The status bit is not checked by an instruction. It is interpreted
during program test (program status) only.

Bit 3 of the status word is called the OR bit (see Figure 6-6). The OR bit is
needed if you use Contact instructions to perform logical Or operations with
an And function. Logical Or operations correspond to arranging contacts in
parallel. The And function corresponds to arranging contacts in series (see
Section 6.2). An And function may contain the following instructions:
Normally Open Contact and Normally Closed Contact. The OR bit shows
these instructions that a previously executed And function has supplied the
value 1 and thus forestalls the result of the logical Or operation. Any other
bit-processing command resets the OR bit.

Bit 5 of the status word is called the overflow bit (OV bit, see Figure 6-6).
The OV bit indicates a fault. It is set by a math instruction or a floating-point
compare instruction after a fault occurs (overflow, illegal operation, illegal
number). The bit is set or reset in accordance with the result of the math or
comparison operation (fault).

Bit 4 of the status word is called the stored overflow bit (OS bit, see
Figure 6-6). The OS bit is set together with the OV bit if an error occurs.
Because the OS bit remains set after the error has been eliminated (unlike the
OV bit), it indicates whether or not a error occurred in one of the previously
executed instructions. The following commands reset the OS bit: JOS (jump
after stored overflow, STL programming), the block call commands, and the
block end commands.

Bits 7 and 6 of the status word are called condition code 1 and condition
code 0 (CC 1 and CC 0, see Figure 6-6). CC 1 and CC 0 provide information
on the following results or bits:

� Result of a math operation

� Result of a comparison

� Result of a digital operation

� Bits that have been shifted out by a shift or rotate command

Status Bit

OR Bit

Overflow Bit

Stored Overflow
Bit

Condition Code 1
and Condition
Code 0

Configuration and Elements of Ladder Logic

6-15
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Tables 6-10 through 6-15 list the significance of CC 1 and CC 0 after your
program executes certain instructions.

Table 6-10 CC 1 and CC 0 after Math Instructions, without Overflow

CC 1 CC 0 Explanation

0 0 Result = 0

0 1 Result < 0

1 0 Result > 0

Table 6-11 CC 1 and CC 0 after Integer Math Instructions, with Overflow

CC 1 CC 0 Explanation

0 0 Negative range overflow in Add Integer and Add Double Integer

0 1

Negative range overflow in Multiply Integer and Multiply
Double Integer
Positive range overflow in Add Integer, Subtract Integer, Add
Double Integer, Subtract Double Integer, Twos Complement
Integer, and Twos Complement Double Integer

1 0

Positive range overflow in Multiply Integer and Multiply Double
Integer, Divide Integer, and Divide Double Integer
Negative range overflow in Add Integer, Subtract Integer, Add
Double Integer, and Subtract Double Integer

1 1
Division by 0 in Divide Integer, Divide Double Integer, and
Return Fraction Double Integer

Table 6-12 CC 1 and CC 0 after Floating-Point Math Instructions, with Overflow

CC 1 CC 0 Explanation

0 0 Gradual underflow

0 1 Negative range overflow

1 0 Positive range overflow

1 1 Illegal operation

Configuration and Elements of Ladder Logic

6-16
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Table 6-13 CC 1 and CC 0 after Comparison Instructions

CC 1 CC 0 Explanation

0 0 IN2 = IN1

0 1 IN2 < IN1

1 0 IN2 > IN1

1 1 IN1 or IN2 is an illegal floating-point number

Table 6-14 CC 1 and CC 0 after Shift and Rotate Instructions

CC 1 CC 0 Explanation

0 0 Bit shifted out last = 0

1 0 Bit shifted out last = 1

Table 6-15 CC 1 and CC 0 after Word Logic Instructions

CC 1 CC 0 Explanation

0 0 Result = 0

1 0 Result <> 0

Bit 8 of the status word is called the binary result bit (BR bit, see Figure 6-6).
The BR bit forms a link between the processing of bits and words. This bit
enables your program to interpret the result of a word operation as a binary
result and to integrate this result in a binary logic chain. Viewed from this
angle, the BR represents a machine-internal memory marker into which the
RLO is saved prior to an RLO-changing word operation, so that it is still
available for the continuation of the interrupted bit chain after the operation
has been carried out.

For example, the BR bit makes it possible for you to write a function block
(FB) or a function (FC) in statement list (STL) and then call the FB or FC
from ladder logic (LAD).

When writing a function block or function that you want to call from Ladder,
no matter whether you write the FB or FC in STL or LAD, you are
responsible for managing the BR bit. The BR bit corresponds to the enable
output (ENO) of a Ladder box. You should use the SAVE instruction (in
STL) or the or the –––(SAVE) coil (in LAD) to store an RLO in the BR bit
according to the following criteria:

� Store an RLO of 1 in the BR bit for a case where the FB or FC is
executed without error.

� Store an RLO of 0 in the BR bit for a case where the FB or FC is
executed with error

You should program these instructions at the end of the FB or FC so that
these are the last instructions that are executed in the block.

Binary Result Bit

Configuration and Elements of Ladder Logic

6-17
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

!
Warning

Possible unintentional resetting of the BR bit to 0.

When writing FBs and FCs in Ladder, if you fail to manage the BR bit as
described above, one FB or FC may overwrite the BR bit of another FB
or FC.

To avoid this problem, store the RLO at the end of each FB or FC as
described above.

The enable input (EN) and enable output (ENO) parameters of a ladder logic
box function according to the following principles:

� If EN is not activated (that is, if it has a signal state of 0), the box does
not carry out its function and ENO is not activated (that is, it also has a
signal state of 0).

� If EN is activated (that is, if it has a signal state of 1) and the box to
which EN belongs executes its function without error, ENO is also
activated (that is, it also has a signal state of 1).

� If EN is activated (that is, if it has a signal state of 1) and an error occurs
while the box to which EN belongs is executing its function, ENO is not
activated (that is, its signal state is 0).

When you call a system function block (SFB) or a system function (SFC) in
your program, the SFB or SFC indicates whether the CPU was able to
execute the function with or without errors by providing the following
information in the binary result bit:

� If an error occurred during execution, the BR bit is 0.

� If the function was executed with no error, the BR bit is 1.

Meaning of
EN/ENO

Configuration and Elements of Ladder Logic

6-18
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Configuration and Elements of Ladder Logic

7-1
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Addressing

Section Description Page

7.1 Overview 7-2

7.2 Types of Addresses 7-4

Chapter Overview

7

7-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

7.1 Overview

Many ladder logic instructions work together with one or more addresses
(operands). This address indicates a constant or a place where the instruction
finds a variable on which to perform a logic operation. This place can be a
bit, a byte, a word or a double word of the address.

Possible addresses are, e.g.:

� A constant, the value of a timer or counter, or an ASCII character string

� A bit in the status word of the programmable logic controller

� A data block and a location within the data block area

The following types of addressing are available:

� Immediate addressing (enter a constant as the address)

� Direct addressing (enter a variable as the address)

Figure 7-1 shows an example of immediate and direct addressing. The
function of the box is to compare two input parameters (in this case, two
16-bit integers) to see if the first input is less than or equal to the second. The
constant 50 is entered as input parameter IN1 Memory word MW200, a
location in memory, is entered as input parameter IN2.

Because the constant 50 in the example is the actual value with which IN1 of
the box is to work, 50 is considered an immediate address of the instruction
box. Because MW200 points to a location in memory where there is another
value with which IN2 of the box is to work, MW200 is considered a direct
address. MW200 is a location, not the actual value itself.

CMP_I
 <=

IN1
50

MW200 IN2

Figure 7-1 Immediate and Direct Addressing

What Is
Addressing?

Immediate and
Direct Addressing

Addressing

7-3
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Table 7-1 Constant Formats for Immediate Addressing Using Addresses of Elementary Data Types

Type and
Description

Size in
Bits

Format Options Range and Number Notation
 (Lowest Value to Highest Value)

Example

BOOL
(Bit)

1 Boolean Text TRUE/FALSE TRUE

BYTE
(Byte)

8 Hexadecimal B#16#0 to B#16#FF B#16#10
byte#16#10

WORD
(Word)

16 Binary

Hexadecimal

BCD
Unsigned decimal

2#0 to
2#1111_1111_1111_1111
W#16#0 to W#16#FFFF

C#0 to C#999
B#(0,0) to B#(255,255)

2#0001_0000_0000_0000

W#16#1000
word16#1000
C#998
B#(10,20)
byte#(10,20)

DWORD
(Double
word)

32 Binary

Hexadecimal
Unsigned decimal

2#0 to
2#1111_1111_1111_1111_
1111_1111_1111_1111
DW#16#0000_0000 to
DW#16#FFFF_FFFF
B#(0,0,0,0) to
B#(255,255,255,255)

2#1000_0001_0001_1000_
1011_1011_0111_1111

DW#16#00A2_1234
dword#16#00A2_1234
B#(1,14,100,120)
byte#(1,14,100,120)

INT
(Integer)

16 Signed decimal -32768 to 32767 1

DINT
(Double
integer)

32 Signed decimal L#-2147483648 to L#2147483647L#1

REAL
(Floating
point)

32 IEEE
floating point

Upper limit: ±3.402823e+38
Lower limit: ±1.175495e-38
(see also Table C-5)

1.234567e+13

S5TIME
(SIMATIC
time)

16 S5 Time in
10-ms units (as
default value)

S5T#0H_0M_0S_10MS to
S5T#2H_46M_30S_0MS and
S5T#0H_0M_0S_0MS

S5T#0H_1M_0S_0MS
S5TIME#0H_1M_0S_0MS

TIME
(IEC time)

32 IEC time in 1-ms
units, signed
integer

T#-24D_20H_31M_23S_648MS
to
T#24D_20H_31M_23S_647MS

T#0D_1H_1M_0S_0MS
TIME#0D_1H_1M_0S_0MS

DATE
(IEC date)

16 IEC date
in 1-day units

D#1990-1-1 to
D#2168-12-31

D#1994-3-15
DATE#1994-3-15

TIME_OF_
DAY
(Time of
day)

32 Time of day in
1-ms units

TOD#0:0:0.0 to
TOD#23:59:59.999

TOD#1:10:3.3
TIME_OF_DAY#1:10:3.3

CHAR
(Character)

8 Character ’A’,’B’, and so on ’E’

Addressing

7-4
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

7.2 Types of Addresses

An address of a ladder logic instruction can indicate any of the following
items:

� A bit whose signal state is to be checked

� A bit to which the signal state of the logic string is assigned

� A bit to which the result of logic operation (RLO) is assigned

� A bit that is to be set or reset

� A number that indicates a counter that is to be incremented or
decremented

� A number that indicates a timer to be used

� An edge memory bit that stores the previous result of logic operation
(RLO)

� An edge memory bit that stores the previous signal state of another
address

� A byte, word, or double word that contains a value with which the ladder
element or box is to work.

� The number of a data block (DB or DI) that is to be opened or created

� The number of a function (FC), system function (SFC), function block
(FB), or system function block (SFB) that is to be called

� A label that is to be jumped to

Variables as addresses include an address identifier and a location within the
memory area indicated by the address identifier. An address identifier can be
one of the following two basic types:

� An address identifier that indicates both of the following:

– The memory area in which an instruction finds a value (data object)
on which to perform an operation (for example, I for the
process-image input area of memory, see Table 6-5)

– The size of the value (data object) on which the instruction is to
perform its operation (for example, B for byte, W for word, and D for
double word, see Table 6-5)

� An address identifier that indicates a memory area but no size of a data
object in that area (for example, an identifier that indicates the area T for
timer, C for counter, or DB or DI for data block, plus the number of that
timer, counter, or data block, see Table 6-5.

Possible
Addresses

Address Identifiers

Addressing

7-5
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

A pointer is a device that identifies the location of a variable. A pointer
contains an address instead of a value. When assigning an actual parameter
for the parameter type “pointer,” you provide the memory address. STEP 7
allows you to enter the pointer in either a pointer format or simply as an
address (such as M 50.0). The following is an example of the pointer format
for accessing data starting at M 50.0:

P#M50.0

If you are working with an instruction whose address identifier indicates a
memory area of your programmable logic controller and a data object that is
either a word or a double word in size, you need to be aware of the fact that
the memory location is always referenced as a byte location. This byte
location is the smallest byte number or the number of the high byte. For
example, the address in the statement shown in Figure 7-2 references four
successive bytes in memory area M, starting at byte 10 (MB10) and going
through byte 13 (MB13).

Statement: L MD10

Address identifier Byte location

Figure 7-2 Example of Memory Location Referenced as Byte Location

Figure 7-3 illustrates data objects of the following sizes:

� Double word: memory double word MD10

� Word: memory words MW10, MW11, and MW12

� Byte: memory bytes MB10, MB11, MB12, and MB13

When you use absolute addresses that are a word or a double word in width,
make sure that you do not create any byte assignments that overlap.

MB10 MB11 MB12 MB13

MW11

MD10

MW10 MW12

Figure 7-3 Referencing a Memory Location as a Byte Location

Pointers

Working with Word
or Double Word as
Data Object

Addressing

7-6
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Addressing

8-1
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Bit Logic Instructions

Section Description Page

8.1 Overview 8-2

8.2 Normally Open Contact 8-3

8.3 Normally Closed Contact 8-4

8.4 Output Coil 8-5

8.5 Midline Output 8-6

8.6 Invert Power Flow 8-7

8.7 Save RLO to BR Memory 8-8

8.8 Set Coil 8-9

8.9 Reset Coil 8-10

8.10 Set Counter Value 8-11

8.11 Up Counter Coil 8-12

8.12 Down Counter Coil 8-13

8.13 Pulse Timer Coil 8-14

8.14 Extended Pulse Timer Coil 8-15

8.15 On-Delay Timer Coil 8-16

8.16 Retentive On-Delay Timer Coil 8-17

8.17 Off-Delay Timer Coil 8-18

8.18 Positive RLO Edge Detection 8-19

8.19 Negative RLO Edge Detection 8-20

8.20 Address Positive Edge Detection 8-21

8.21 Address Negative Edge Detection 8-22

8.22 Set Reset Flipflop 8-23

8.23 Reset Set Flipflop 8-24

Chapter Overview

8

8-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

8.1 Overview

Bit logic instructions work with two digits, 1 and 0. These two digits form
the base of a number system called the binary system. The two digits 1 and 0
are called binary digits or bits. In the world of contacts and coils, a 1
indicates activated or energized, and a 0 indicates not activated or not
energized.

The bit logic instructions interpret signal states of 1 and 0 and combine them
according to Boolean logic. These combinations produce a result of 1 or 0
that is called the “result of logic operation” (RLO, see Section 6.3). The logic
operations that are triggered by the bit logic instructions perform a variety of
functions.

There are bit logic instructions to perform the following functions:

� Normally Open Contact and Normally Closed Contact each check the
signal state of a contact and produce a result that is either copied to the
result of logic operation (RLO) bit or is combined with the RLO. If these
contacts are connected in series, they combine the result of their signal
state check according to the And truth table (see Table 6-8); if they are
connected in parallel, they combine their result according to the Or truth
table (see Table 6-9).

� Output Coil and Midline Output assign the RLO or store it temporarily.

� The following instructions react to an RLO of 1:

– Set Coil and Reset Coil

– Set Reset and Reset Set Flipflops

� Other instructions react to a positive or negative edge transition to
perform the following functions:

– Increment or decrement the value of a counter

– Start a timer

– Produce an output of 1

� The remaining instructions affect the RLO directly in the following ways:

– Negate (invert) the RLO

– Save the RLO to the binary result bit of the status word

In this chapter, the counter and timer coils are shown in their international
and SIMATIC forms.

Explanation

Functions

Bit Logic Instructions

8-3
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

8.2 Normally Open Contact

You can use the Normally Open Contact (Address) instruction to check the
signal state of a contact at a specified address. If the signal state at the
specified address is 1, the contact is closed and the instruction produces a
result of 1. If the signal state at the specified address is 0, the contact is open
and the instruction produces a result of 0.

When Normally Open Contact (Address) is the first instruction in a logic
string, this instruction stores the result of its signal check in the result of logic
operation (RLO) bit.

Any Normally Open Contact (Address) instruction that is not the first
instruction in a logic string combines the result of its signal state check with
the value that is stored in the RLO bit. The instruction makes the
combination in one of the two following ways:

� If the instruction is used in series, it combines the result of its signal state
check according to the And truth table.

� If the instruction is used in parallel, it combines the result of its signal
state check according to the Or truth table.

Table 8-1 Normally Open Contact (Address) Element and Parameter

LAD Element Parameter Data Type Memory Area Description

<address>
<address>

BOOL
TIMER
COUNTER

I, Q, M, T, C,
D, L

The address indicates the bit whose
signal state is checked.

I 0.0

I 0.2

Status Word Bits

I 0.1

Power flows if one of the following conditions exists:
� The signal state is 1 at inputs I 0.0 and I 0.1
� Or the signal state is 1 at input I 0.2

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – x x x 1

Figure 8-1 Normally Open Contact (Address)

Description

Bit Logic Instructions

8-4
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

8.3 Normally Closed Contact

You can use the Normally Closed Contact (Address) instruction to check the
signal state of a contact at a specified address. If the signal state at the
specified address is 0, the contact is closed and the instruction produces a
result of 1. If the signal state at the specified address is 1, the contact is open
and the instruction produces a result of 0.

When Normally Closed Contact (Address) is the first instruction in a logic
string, this instruction stores the result of its signal check in the result of logic
operation (RLO) bit.

Any Normally Closed Contact (Address) instruction that is not the first
instruction in a logic string combines the result of its signal state check with
the value that is stored in the RLO bit. The instruction makes the
combination in one of the two following ways:

� If the instruction is used in series, it combines the result of its signal state
check according to the And truth table.

� If the instruction is used in parallel, it combines the result of its signal
state check according to the Or truth table.

Table 8-2 Normally Closed Contact (Address) Element and Parameter

LAD Element Parameter Data Type Memory Area Description

<address>
<address>

BOOL
TIMER
COUNTER

I, Q, M, T, C,
D, L

The address indicates the bit whose
signal state is checked.

I 0.0

I 0.2

Status Word Bits

I 0.1

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – x x x 1

Power flows if one of the following conditions exists:
� The signal state is 1 at inputs I 0.0 and I 0.1
� Or the signal state is 0 at input I 0.2

Figure 8-2 Normally Closed Contact (Address)

Description

Bit Logic Instructions

8-5
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

8.4 Output Coil

The Output Coil instruction works like a coil in a relay logic diagram. The
coil at the end of the circuit is either energized or not energized depending on
the following criteria:

� If power can flow across the circuit to reach the coil (that is, the signal
state of the circuit is 1), the power energizes the coil.

� If power cannot flow across the entire circuit to reach the coil (that is, the
signal state of the circuit is 0), the power cannot energize the coil.

The ladder logic string represents the circuit. The Output Coil instruction
assigns the signal state of the ladder logic string to the coil that the
instruction addresses (this is the same as assigning the signal state of the
RLO bit to the address). If there is power flow across the logic string, the
signal state of the logic string is 1; otherwise the signal state is 0.

The Output Coil instruction is affected by the Master Control Relay (MCR).
For more information on how the MCR functions, see Section 20.5.

You can place an Output Coil only at the right end of a logic string. Multiple
Output Coils are possible. You cannot place an output coil alone in an
otherwise empty network. The coil must have a preceding link.

You can create a negated output by using the Invert Power Flow instruction.

Table 8-3 Output Coil Element and Parameter

LAD Element Parameter Data Type Memory Area Description

<address>
<address> BOOL I, Q, M, D, L

The address indicates the bit to which
the signal state of the logic string is
assigned.

I 0.0

I 0.2

Status Word Bits

I 0.1

The signal state of output Q 4.0 is 1 if one of the
following conditions exists:
� The signal state is 1 at inputs I 0.0 and I 0.1

and I 0.3.
� Or the signal state is 0 at input I 0.2

The signal state of output Q4.1 is 1 if one of the
following conditions exists:
� The signal state is 1 at inputs I 0.0 and I 0.1

and I 0.3.
� Or the signal state is 0 at input I 0.2

and 1 at input I 0.3

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – 0 x – 0

I 0.3

Q 4.0

Q 4.1

Figure 8-3 Output Coil

Description

Bit Logic Instructions

8-6
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

8.5 Midline Output

The Midline Output instruction is an intermediate assigning element that
stores the RLO. This intermediate assigning element saves the bit logic
combination of the last open branch until the assigning element is reached. In
a series with other contacts, the Midline Output functions as a normal
contact.

The Midline Output instruction is affected by the Master Control Relay
(MCR). For more information on how the MCR functions, see Section 20.5.

Certain restrictions apply to the placement of a Midline Output. For example,
a Midline Output element can never be located at the end of a network or at
the end of an open branch. See also Section 6.1.

You can create a negated output by using the Invert Power Flow instruction.

Table 8-4 Midline Output Element and Parameter

LAD Element Parameter Data Type Memory Area Description

#
<address>

<address> BOOL I, Q, M, D, L1 The address indicates the bit to which
the RLO is assigned.

1 For the Midline Output instruction, you can only use an address in the L memory area if you declare it in VAR_TEMP.
You cannot use the L memory area for an absolute address with this instruction.

The following Midline Outputs have the following RLOs:

M 0.0 has the RLO of

M 1.1 has the RLO of

M 2.2 has the RLO of the complete bit logic combination.

I 1.0

Status Word Bits

I 1.1

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – 0 x –

M 0.0

#

I 1.2 I 1.3

NOT

M 1.1

NOT

M 2.2

#

Q 4.0

I 1.0 I 1.1

I 1.2 I 1.3

NOT

I 1.0 I 1.1 M 0.0

#

Figure 8-4 Midline Output

Description

Bit Logic Instructions

8-7
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

8.6 Invert Power Flow

The Invert Power Flow instruction negates the RLO.

Table 8-5 Invert Power Flow Element

LAD Element Parameter Data Type Memory Area Description

NOT None – – –

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – – 1 * –

I 0.0

I 0.1 I 0.2

Q 4.0
Output Q 4.0 is 1 if one of the following
conditions exists:
� The signal state at input I 0.0 is NOT 1
� Or the signal state is NOT 1 at either

input I 0.1 or input I 0.2 or both.

NOT

Figure 8-5 Invert Power Flow

Description

Bit Logic Instructions

8-8
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

8.7 Save RLO to BR Memory

The Save RLO to BR Memory instruction saves the RLO to the BR bit of the
status word.

Table 8-6 Save RLO to BR Memory

LAD Element Parameter Data Type Memory Area Description

SAVE None – – –

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x – – – – – – – –

The status of the rung (= RLO)
is saved to the BR bit before
FC10 is called.

SAVE
I 0.0

Figure 8-6 Save RLO to BR Memory

Description

Bit Logic Instructions

8-9
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

8.8 Set Coil

The Set Coil instruction is executed only if the RLO = 1. If the RLO = 1, this
instruction sets its specified address to 1. If the RLO = 0, the instruction has
no effect on the specified address. The address remains unchanged.

The Set Coil instruction is affected by the Master Control Relay (MCR). For
more information on how the MCR functions, see Section 20.5.

Table 8-7 Set Coil Element and Parameter

LAD Element Parameter Data Type Memory Area Description

S
<address>

<address> BOOL I, Q, M, D, L
The address indicates the bit that is to
be set.

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – 0 x – 0

I 0.0

I 0.2

I 0.1 Q 4.0

S

The signal state of output Q 4.0 is set to 1 if one of
the following conditions exists:
� The signal state is 1 at input I 0.0 And I 0.1
� Or the signal state is 0 at input I 0.2.

If the RLO of the branch is 0, the signal state of
output Q 4.0 remains unchanged.

Figure 8-7 Set Coil

Description

Bit Logic Instructions

8-10
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

8.9 Reset Coil

The Reset Coil instruction is executed only if the RLO = 1. If the RLO = 1,
this instruction resets its specified address to 0. If the RLO = 0, the
instruction has no effect on its specified address. The address remains
unchanged.

The Reset Coil instruction is affected by the Master Control Relay (MCR).
For more information on how the MCR functions, see Section 20.5.

Table 8-8 Reset Coil Element and Parameter

LAD Element Parameter Data Type Memory Area Description

R
<address>

<address>
BOOL
TIMER

COUNTER

I, Q, M, T, C,
D, L

The address indicates the bit that is to
be reset.

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – 0 x – 0

I 0.0

I 0.2

I 0.1 Q 4.0

R

The signal state of output Q 4.0 is reset to 0 if one
of the following conditions exists:
� The signal state is 1 at inputs I 0.0 and I 0.1
� Or the signal state is 0 at input I 0.2

If the RLO of the branch is 0, the signal state of
output Q 4.0 remains unchanged.

Figure 8-8 Reset Coil

Description

Bit Logic Instructions

8-11
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

8.10 Set Counter Value

You can use the Set Counter Value (SC) instruction to place a preset value
into the counter that you specify. The instruction is executed only if the RLO
has a positive edge (that is, a transition from 0 to 1 takes place in the RLO).

Table 8-9 Set Counter Value Element and Parameters, with SIMATIC and International Short Name

LAD Element Parameter Data Type Memory Area Description

SZ

<address> Counter
number

COUNTER C The address indicates the number of the
counter that is to be preset with a value.

SZ

SC

<Preset value>

Preset
value

– I, Q, M, D, L The value for presetting can be in the
range of 0 to 999. C# should precede the
value to indicate binary coded decimal
(BCD) format, for example C#100.

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – 0 x – 0

I 0.0 C 5

SC

If the signal state of input I 0.0 changes from 0 to 1
(that is, if there is a positive edge in the RLO),
counter C 5 is preset with the value of 100. The C#
indicates that you are entering a value in BCD
format. When you save the rung, this value will be
represented as w#16#100 on your screen.

If there is not a positive edge, the value of counter
C 5 remains unchanged.

C#100

Figure 8-9 Set Counter Value

Description

Bit Logic Instructions

8-12
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

8.11 Up Counter Coil

The Up Counter Coil (CU) instruction increments the value of a specified
counter by one if the RLO has a positive edge (that is, a transition from 0 to 1
takes place in the RLO) and the value of the counter is less than 999. If the
RLO does not have a positive edge, or if the counter is already at 999, the
value of the counter does not change.

The Set Counter Value instruction sets the value of the counter (see
Section 8.10).

Table 8-10 Up Counter Coil Element and Parameter, with SIMATIC and International Short Name

LAD Element Parameter Data Type Memory Area Description

ZV
<address>

CU

Counter
number

COUNTER C The address indicates the number of
the counter that is to be incremented.

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – 0 – – 0

I 0.0 C 10

CU

If the signal state of input I 0.0 changes from
0 to 1 (that is, if there is a positive edge in the
RLO), the value of counter C 10 is
incremented by 1 (unless the value of C 10 is
equal to 999).

If there is not a positive edge, the value of
C 10 remains unchanged.

Figure 8-10 Up Counter Coil

Description

Bit Logic Instructions

8-13
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

8.12 Down Counter Coil

The Down Counter Coil (CD) instruction decrements the value of a specified
counter by one if the RLO has a positive edge (that is, a transition from 0 to 1
takes place in the RLO) and the value of the counter is more than 0. If the
RLO does not have a positive edge, or if the counter is already at 0, the value
of the counter does not change.

The Set Counter Value instruction sets the value of the counter (see
Section 8.10).

Table 8-11 Down Counter Coil Element and Parameter, with SIMATIC and International Short Name

LAD Element Parameter Data Type Memory Area Description

<address>

ZR

CD

Counter
number

COUNTER C The address indicates the number of
the counter that is to be
decremented.

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – 0 – – 0

I 0.0 C 10

CD

If the signal state of input I 0.0 changes from
0 to 1 (that is, if there is a positive edge in
the RLO), the value of counter C 10 is
decremented by 1 (unless the value of C 10
is equal to 0).

If there is not a positive edge, the value of
C 10 remains unchanged.

Figure 8-11 Down Counter Coil

Description

Bit Logic Instructions

8-14
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

8.13 Pulse Timer Coil

The Pulse Timer Coil (SP) instruction starts a specified timer with a given
time value if the RLO has a positive edge (that is, a transition from 0 to 1
takes place in the RLO). The timer continues to run with the specified time
as long as the RLO is positive. A signal state check of the timer number for 1
produces a result of 1 as long as the timer is running. If the RLO changes
from 1 to 0 before the specified time has elapsed, the timer is stopped. In this
case, a signal state check for 1 produces a result of 0.

Time units are d (days), h (hours), m (minutes), s (seconds), and ms
(milliseconds). For information on the location of a timer in memory and the
components of a timer, see Section 9.1.

Table 8-12 Pulse Timer Coil Element and Parameters, with SIMATIC and International Short Name

LAD Element Parameter Data Type Memory Area Description

SI
<address>

SP

Timer
number

TIMER T The address indicates the number of
the timer that is to be started.

<Time value>

SP
Time value S5TIME I, Q, M, D, L Time value (S5TIME format)

SP

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – 0 – – 0

I 0.0 T 5

If the signal state of input I 0.0 changes from 0
to 1 (that is, there is a positive edge in the
RLO), timer T 5 is started. The timer continues
to run with the specified time of 2 seconds as
long as the signal state of input I 0.0 is 1. If the
signal state of input I 0.0 changes from 1 to 0
before the specified time has elapsed, the
timer stops.

The signal state of output Q 4.0 is 1 as long as
the timer is running.

Examples of timer values:
S5T#2s = 2 seconds
S5T#12m_18s = 12 minutes and 18 seconds

T 5 Q 4.0

S5T# 2s

Figure 8-12 Pulse Timer Coil

Description

Bit Logic Instructions

8-15
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

8.14 Extended Pulse Timer Coil

The Extended Pulse Timer Coil (SE) instruction starts a specified timer with
a given time value if the RLO has a positive edge (that is, a transition from
0 to 1 takes place in the RLO). The timer continues to run with the specified
time even if the RLO changes to 0 before the time has elapsed. A signal state
check of the timer number for 1 produces a result of 1 as long as the timer is
running. The timer is restarted (retriggered) with the specified time if the
RLO changes from 0 to 1 while the timer is running. For information on the
location of a timer in memory and the components of a timer, see
Section 9.1.

Table 8-13 Extended Pulse Timer Coil Element and Parameters, with SIMATIC and International Short Name

LAD Element Parameter Data Type Memory Area Description

SV
<address>

SE

Timer
number

TIMER T The address indicates the number of
the timer that is to be started.

Time value

SE Time value S5TIME I, Q, M, D, L Time value (S5TIME format)

SE

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – 0 – – 0

I 0.0 T 5
If the signal state of I 0.0 changes from 0 to 1 (that
is, there is a positive edge in the RLO), timer T 5 is
started. The timer continues to run without regard to
a negative edge in the RLO. If the signal state of
I 0.0 changes from 0 to 1 before the specified time
has elapsed, the timer is retriggered.

The signal state of output Q 4.0 is 1 as long as the
timer is running.

T 5 Q 4.0

S5T#2s

Figure 8-13 Extended Pulse Timer Coil

Description

Bit Logic Instructions

8-16
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

8.15 On-Delay Timer Coil

The On-Delay Timer Coil (SD) instruction starts a specified timer if the RLO
has a positive edge (that is, a transition from 0 to 1 takes place in the RLO).
A signal state check of the timer for 1 produces a result of 1 when the
specified time has elapsed without error and the RLO is still 1. When the
RLO changes from 1 to 0 while the timer is running, the timer is stopped. In
this case, a signal state check for 1 always produces the result 0. For
information on the location of a timer in memory and the components of a
timer, see Section 9.1.

Table 8-14 On-Delay Timer Coil Element and Parameters, with SIMATIC and International Short Name

LAD Element Parameter Data Type Memory Area Description

SE
<address>

SD

Timer
number

TIMER T The address indicates the number of
the timer that is to be started.

Time value

SD
Time value S5TIME I, Q, M, D, L Time value (S5TIME format)

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – 0 – – 0

I 0.0 T 5

SD
If the signal state of input I 0.0 changes from
0 to 1 (that is, there is a positive edge in the
RLO), timer T 5 is started. If the time elapses
and the signal state of input I 0.0 is still 1,
output Q 4.0 is 1. If the signal state of input
I 0.0 changes from1 to 0, the timer is stopped,
and output Q 4.0 is 0.

T 5 Q 4.0

S5T# 2s

Figure 8-14 On-Delay Timer Coil

Description

Bit Logic Instructions

8-17
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

8.16 Retentive On-Delay Timer Coil

The Retentive On-Delay Timer Coil (SS) instruction starts a specified timer
if the RLO has a positive edge (that is, a transition from 0 to 1 takes place in
the RLO). The timer continues to run with the specified time even if the RLO
changes to 0 before the time elapses. A signal state check of the timer
number for 1 produces a result of 1 when the time has elapsed, without
regard to the RLO. The timer is restarted (retriggered) with the specified time
if the RLO changes from 0 to 1 while the timer is running. For information
on the location of a timer in memory and the components of a timer, see
Section 9.1.

Table 8-15 Retentive On-Delay Timer Coil Element and Parameters, with SIMATIC and International Short Name

LAD Element Parameter Data Type Memory Area Description

SS

<address> Timer
number

TIMER T The address indicates the number
of the timer that is to be started.

Time value Time value S5TIME I, Q, M, D, L Time value (S5TIME format)

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – 0 – – 0

I 0.0 T 5

SF If the signal state of input I 0.0 changes from 1
to 0, the timer is started.

The signal state of output Q 4.0 is 1 when the
signal state of input I 0.0 is 1, or when the
timer is running.

T 5 Q 4.0

S5T# 2s

Figure 8-15 Off-Delay Timer Coil

Description

Bit Logic Instructions

8-18
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

8.17 Off-Delay Timer Coil

The Off-Delay Timer Coil (SF) instruction starts a specified timer if the RLO
has a negative edge (that is, a transition from 1 to 0 takes place in the RLO).
The result of a signal state check of the timer number for 1 is 1 when the
RLO is 1, or when the timer is running. The timer is reset when the RLO
goes from 0 to 1 while the timer is running. The timer is not restarted until
the RLO changes from 1 to 0.

For information on the location of a timer in memory and the components of
a timer, see Section 9.1.

Table 8-16 Off-Delay Timer Coil Element and Parameters, with SIMATIC and International Short Name

LAD Element Parameter Data Type Memory Area Description

SA
<address>

SF

Timer
number

TIMER T The address indicates the number
of the timer that is to be started.

Time value

SF
Time value S5TIME I, Q, M, D, L Time value (S5TIME format)

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – 0 – – 0

I 0.0 T 5

SF
If the signal state of input I 0.0 changes from 1
to 0, the timer is started.
If the signal state of I 0.0 changes from 0 to 1,
the timer is reset.
The signal state of output Q 4.0 is 1 when the
signal state of input I 0.0 is 1, or when the
timer is running.

T 5 Q 4.0

S5T# 2s

Figure 8-16 Off-Delay Timer Coil

Description

Parameters

Bit Logic Instructions

8-19
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

8.18 Positive RLO Edge Detection

The operation Positive RLO Edge Detection recognizes a change in the
entered address from 0 to 1 (rising edge) and displays this as RLO = 1 after
the operation. The current signal state in the RLO is compared with the
signal state of the address, the edge memory bit. If the signal state of the
address is 0 and the RLO was 1 before the operation, the RLO will be 1
(impulse) after the operation, and 0 in all other cases. The RLO prior to the
operation is stored in the address.

Certain restrictions apply to the placement of the Positive RLO Edge
Detection element (see Section 6.1).

Table 8-17 Positive RLO Edge Detection Element and Parameter

LAD Element Parameter Data Type Memory Area Description

 P

<address1>
<address1> BOOL Q, M, D

The address indicates the edge memory
bit that stores the previous RLO.

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – x x x 1

I 0.0 CAS1
Edge memory bit M 0.0 saves the old
state of the RLO from the complete bit
logic combination. If there is a signal
change at the RLO from 0 to 1, the
program jumps to label CAS1.

I 0.2

I 0.1

P JMP

M 0.0

Figure 8-17 Positive RLO Edge Detection

Description

Bit Logic Instructions

8-20
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

8.19 Negative RLO Edge Detection

The operation Negative RLO Edge Detection recognizes a change in the
entered address from 1 to 0 (falling edge) and displays this as RLO = 1 after
the operation. The current signal state in the RLO is compared with the
signal state of the address, the edge memory bit. If the signal state of the
address is 1 and the RLO was 0 before the operation, the RLO will be 0
(impulse) after the operation, and 1 in all other cases. The RLO prior to the
operation is stored in the address.

Certain restrictions apply to the placement of the Negative RLO Edge
Detection element (see Section 6.1).

Table 8-18 Negative RLO Edge Detection Element and Parameter

LAD Element Parameter Data Type Memory Area Description

 N

<address1>
<address1> BOOL Q, M, D

The address indicates the edge memory
bit that stores the previous RLO.

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – x x x 1

I 0.0 CAS1
Edge memory bit M 0.0 saves the old
state of the RLO from the complete bit
logic combination. If there is a signal
change at the RLO from 1 to 0, the
program jumps to label CAS1.

I 0.2

I 0.1

N JMP

M 0.0

Figure 8-18 Negative RLO Edge Detection

Description

Bit Logic Instructions

8-21
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

8.20 Address Positive Edge Detection

The Address Positive Edge Detection instruction compares the signal state of
<address1> with the signal state from the previous signal state check stored
in <address2>. If there is a change from 0 to 1, output Q is 1. Otherwise, it
is 0.

Certain restrictions apply to the placement of the Address Positive Edge
Detection box (see Section 6.1).

Table 8-19 Address Positive Edge Detection Box and Parameters

LAD Element Parameter Data Type Memory Area Description

dd 1

<address1> BOOL I, Q, M, D, L
Signal to be checked for a
positive edge transition.

POS

M_BIT

Q

<address1>

<address2>

M_BIT BOOL Q, M, D

The address M_BIT indicates
the edge memory bit that stores
the previous signal state of POS.
Use the process-image input (I)
memory area for the M_BIT
only if no input module already
occupies this address.

Q BOOL I, Q, M, D, L One-shot output

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x – – – – x 1 x 1

I 0.0
Output Q 4.0 is 1 if the following
conditions exist:
� The signal state is 1 at inputs I 0.0

And I 0.1 And I 0.2
� And there is a positive edge at

input I 0.3
� And the signal state is 1 at

input I 0.4

I 0.2I 0.1
 I 0.3

POS

M_BIT

Q

M 0.0

Q 4.0I 0.4

Figure 8-19 Address Positive Edge Detection

Description

Bit Logic Instructions

8-22
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

8.21 Address Negative Edge Detection

The Address Negative Edge Detection instruction compares the signal state
of <address1> with the signal state from the previous signal state check
stored in <address2>. If there is a change from 1 to 0, output Q is 1.
Otherwise it is 0.

Certain restrictions apply to the placement of the Address Negative Edge
Detection box (see Section 6.1).

Table 8-20 Address Negative Edge Detection Box and Parameters

LAD Box Parameter Data Type Memory Area Description

<address1> BOOL I, Q, M, D, L
Signal to be checked for a
negative edge transition

NEG

M_BIT

Q

<address2>

<address1>

M_BIT BOOL Q, M, D

The address M_BIT indicates
the edge memory bit that stores
the previous signal state of NEG.
Use the process-image input (I)
memory area for the M_BIT only
if no input module already
occupies this address.

Q BOOL I, Q, M, D, L One-shot output

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x – – – – x 1 x 1

I 0.0 I 0.2I 0.1
 I 0.3

NEG

M_BIT

Q

M 0.0

Q 4.0I 0.4

Output Q 4.0 is 1 if the following
conditions exist:
� The signal state is 1 at inputs I 0.0

And I 0.1 And I 0.2
� And there is a negative edge

at input I 0.3
� And the signal state is 1 at

input I 0.4

Figure 8-20 Address Negative Edge Detection

Description

Bit Logic Instructions

8-23
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

8.22 Set Reset Flipflop

The Set Reset Flipflop instruction executes Set (S) and Reset (R) operations
only when the RLO is 1. An RLO of 0 has no effect on these operations; the
address specified in the operation remains unchanged.

A Set Reset Flipflop is set if the signal state is 1 at the S input and 0 at the
R input. Otherwise, if the signal state is 0 at the S input and 1 at the R input,
the Flipflop is reset. If the RLO is 1 at both inputs, the Flipflop is reset.

The Set Reset Flipflop instruction is affected by the Master Control Relay
(MCR). For more information on how the MCR functions, see Section 20.5.

Certain restrictions apply to the placement of the Set Reset Flipflop box (see
Section 6.1).

Table 8-21 Set Reset Flipflop Box and Parameters

LAD Box Parameter Data Type Memory Area Description

SR
<address> <address> BOOL I, Q, M, D, L

The address indicates the bit that is to be
set or reset.

SR
QS S BOOL I, Q, M, D, L Enabled set operation

R
R BOOL I, Q, M, D, L Enabled reset operation

R
Q BOOL I, Q, M, D, L Signal state of <address>

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – x x x 1

I 0.0

If the signal state is 1 at input I 0.0 and 0
at input I 0.1, memory bit M 0.0 is set and
output Q 4.0 is 1.

If the signal state is 0 at input I 0.0 and 1
at input I 0.1, memory bit M 0.0 is reset
and Q 4.0 is 0.

If both signal states are 0, nothing is
changed. If both signal states are 1, the
Reset operation dominates because of
the order, M 0.0 is reset, and Q 4.0 is 0.

Q 4.0
 M 0.0

SR

R

QS

I 0.1

Figure 8-21 Set Reset Flipflop

Description

Bit Logic Instructions

8-24
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

8.23 Reset Set Flipflop

The Reset Set Flipflop instruction executes Set (S) and Reset (R) operations
only when the RLO is 1. An RLO of 0 has no effect on these operations; the
address specified in the operation remains unchanged.

A Reset Set Flipflop is reset if the signal state is 1 at the R input and 0 on the
S input. Otherwise, if the signal state is 0 at the R input and 1 at the S input,
the Flipflop is set. If the RLO is 1 at both inputs, the Flipflop is set.

The Reset Set Flipflop instruction is affected by the Master Control Relay
(MCR). For more information on how the MCR functions, see Section 20.5.

Certain restrictions apply to the placement of the Reset Set Flipflop box (see
Section 6.1).

Table 8-22 Reset Set Flipflop Box and Parameters

LAD Box Parameter Data Type Memory Area Description

RS
R Q

<address>
<address> BOOL I, Q, M, D, L

The address indicates the bit that is to be
set or reset.

R Q
R BOOL I, Q, M, D, L Enabled reset operation

S S BOOL I, Q, M, D, L Enabled set operation

Q BOOL I, Q, M, D, L Signal state of <address>

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – x x x 1

I 0.0

If the signal state is 1 at input I 0.0 and 0
at input I 0.1, memory bit M 0.0 is reset,
and output Q 4.0 is 0.

Otherwise, if the signal state is 0 at input
I 0.0 and 1 at input I 0.1, memory bit
M 0.0 is set and Q 4.0 is 1.

If both signal states are 0, nothing is
changed. If both signal states are 1, the
Set operation dominates because of the
order, M 0.0 is set, and Q 4.0 is 1.

Q 4.0
 M 0.0

RS

S

QR

I 0.1

Figure 8-22 Reset Set Flipflop

Description

Bit Logic Instructions

9-1
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Timer Instructions

Section Description Page

9.1 Location of a Timer in Memory and Components of a Timer 9-2

9.2 Choosing the Right Timer 9-4

9.3 Pulse S5 Timer 9-5

9.4 Extended Pulse S5 Timer 9-7

9.5 On-Delay S5 Timer 9-9

9.6 Retentive On-Delay S5 Timer 9-11

9.7 Off-Delay S5 Timer 9-13

Chapter Overview

9

9-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

9.1 Location of a Timer in Memory and Components of a Timer

Timers have an area reserved for them in the memory of your CPU. This
memory area reserves one 16-bit word for each timer address. The ladder
logic instruction set supports 256 timers. Please refer to your CPU’s technical
information to establish the number of timer words available.

The following functions have access to the timer memory area:

� Timer instructions

� Updating of timer words by means of clock timing. This function of your
CPU in the RUN mode decrements a given time value by one unit at the
interval designated by the time base until the time value is equal to zero.

Bits 0 through 9 of the timer word contain the time value in binary code. The
time value specifies a number of units. Time updating decrements the time
value by one unit at an interval designated by the time base. Decrementing
continues until the time value is equal to zero. You can load a time value into
the low word of accumulator 1 in binary, hexadecimal, or binary coded
decimal (BCD) format (see Figure 9-1). The time range is from 0 to 9,990
seconds.

You can pre-load a time value using either of the following formats:

� W#16#wxyz

– Where w = the time base (that is, the time interval or resolution)

– Where xyz = the time value in binary coded decimal format

� S5T# aH_bbM_ccS_ddMS

– Where a = hours, bb = minutes, cc = seconds, and dd = milliseconds

– The time base is selected automatically, and the value is rounded to
the next lower number with that time base.

The maximum time value that you can enter is 9,990 seconds, or
2H_46M_30S.

Bits 12 and 13 of the timer word contain the time base in binary code. The
time base defines the interval at which the time value is decremented by one
unit (see Table 9-1 and Figure 9-1). The smallest time base is 10 ms; the
largest is 10 s.

Table 9-1 Time Base and Its Binary Code

Time Base Binary Code for the Time Base

10 ms 00

100 ms 01

1 s 10

10 s 11

Area in Memory

Time Value

Time Base

Timer Instructions

9-3
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Because time values are stored with only one time interval, values that are
not exact multiples of a time interval are truncated. Values whose resolution
is too high for the required range are rounded down to achieve the desired
range but not the desired resolution. Table 9-2 shows the possible resolutions
and their corresponding ranges.

Table 9-2 Time Base Resolutions and Ranges

Resolution Range

0.01 second 10MS to 9S_990MS

0.1 second 100MS to 1M_39S_900MS

1 second 1S to 16M_39S

10 seconds 10S to 2HR_46M_30S

When a timer is started, the contents of the timer cell are used as the time
value. Bits 0 through 11 of the timer cell hold the time value in binary coded
decimal format (BCD format: each set of four bits contains the binary code
for one decimal value). Bits 12 and 13 hold the time base in binary code (see
Table 9-1). Figure 9-1 shows the contents of the timer cell loaded with timer
value 127 and a time base of 1 second.

Time base
1 second

Irrelevant: These bits are ignored when the timer is started.

Time value in BCD (0 to 999)

15... ...8 7... ...0

1 2 7

x x 1 0 0 0 0 1 0 0 1 0 0 1 1 1

Figure 9-1 Contents of the Timer Cell for Timer Value 127, Time Base 1 Second

Each timer box provides two outputs, BI and BCD, for which you can
indicate a word location. The BI output provides the time value in binary
format. The BCD output provides the time base and the time value in binary
coded decimal (BCD) format.

Bit Configuration
in the Timer Cell

Reading the Time
and the Time Base

Timer Instructions

9-4
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

9.2 Choosing the Right Timer

Figure 9-2 provides an overview of the five types of timers described in this
chapter. This overview is intended to help you choose the right timer for your
timing job.

I 0.0

Q 4.0

S_PEXT

S_ODT

S_ODTS

S_OFFDT

Input signal

Output signal
(Pulse timer) t

S_PULSE

t

t

t

t

The maximum time that the output signal remains at 1 is the
same as the programmed time value t. The output signal
stays at 1 for a shorter period if the input signal changes to 0.

The output signal remains at 1 for the programmed length of
time, regardless of how long the input signal stays at 1.

The output signal changes to 1 only when the programmed
time has elapsed and the input signal is still 1.

The output signal changes from 0 to 1 only when the
programmed time has elapsed, regardless of how long the
input signal stays at 1.

The output signal changes to 1 when the input signal changes
to 1 or while the timer is running. The time is started when the
input signal changes from 1 to 0.

Q 4.0Output signal
(Extended pulse
timer)

Q 4.0Output signal
(On-delay timer)

Q 4.0Output signal
(Retentive
on-delay timer)

Q 4.0Output signal
(Off-delay timer)

Figure 9-2 Choosing the Right Timer

Timer Instructions

9-5
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

9.3 Pulse S5 Timer

The Pulse S5 Timer instruction starts a specified timer if there is a positive
edge (that is, a change in signal state from 0 to 1) at the Start (S) input. A
signal change is always necessary to start a timer. The timer continues to run
with the specified time at the Time Value (TV) input until the programmed
time elapses, as long as the signal state at input TV is 1. While the timer is
running, a signal state check for 1 at output Q produces a result of 1. If there
is a change from 1 to 0 at the S input before the time has elapsed, the timer is
stopped. Then a signal state check for 1 at output Q produces a result of 0.

While the timer is running, a change from 0 to 1 at the Reset (R) input of the
timer resets the timer. This change also resets the time and the time base to
zero. A signal state of 1 at the R input of the timer has no effect if the timer
is not running.

The actual time value can be scanned at outputs BI and BCD. The time value
at BI is in binary coded format; at BCD it is in binary coded decimal format.

Table 9-3 Pulse S5 Timer Box and Parameters, with International Short Name

LAD Box Parameter Data Type Memory Area Description

 T no.

S PULSE

no. TIMER T
Timer identification number. The
range depends on the CPU.

S_PULSE

S Q
S BOOL I, Q, M, D, L, T, C Start input

S
TV BI

Q TV S5TIME I, Q, M, D, L Preset time value (range 0 to 9999)

BCD
TV BI

R BOOL I, Q, M, D, L, T, C Reset input

R Q BOOL I, Q, M, D, L Status of the timer

BI WORD I, Q, M, D, L Remaining time value (integer format)

BCD WORD I, Q, M, D, L Remaining time value (BCD format)

Table 9-4 Pulse S5 Timer Box and Parameters, with SIMATIC Short Name

LAD Box Parameter Data Type Memory Area Description

 T no.

S IMPULS

no. TIMER T
Timer identification number. The
range depends on the CPU.

S_IMPULS

S Q
S BOOL I, Q, M, D, L, T, C Start input

S
TW DUAL

Q TW S5TIME I, Q, M, D, L Preset time value (range 0 to 9999)

DEZ
TW DUAL

R BOOL I, Q, M, D, L, T, C Reset input

R Q BOOL I, Q, M, D, L Status of the timer

DUAL WORD I, Q, M, D, L Remaining time value (integer format)

DEZ WORD I, Q, M, D, L Remaining time value (BCD format)

Description

Timer Instructions

9-6
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Figure 9-3 shows the Pulse S5 Timer instruction, describes the status word
bits, and shows the pulse timer characteristics. Certain restrictions apply to
the placement of timer boxes (see Section 6.1).

–– t ––

t = programmed time

I 0.0

If the signal state of input I 0.0 changes from 0 to 1
(that is, if there is a positive edge in the RLO), timer
T 5 is started. The timer continues to run with the
specified time of two seconds (2s) as long as input
I 0.0 is 1. If the signal state of input I 0.0 changes
from1 to 0 before the time elapses, the timer is
stopped. If the signal state of input I 0.1 changes
from 0 to 1 while the timer is running, the timer is
reset. The signal state of output Q 4.0 is 1 as long as
the timer is running.

Examples for other preset Time Values:
Available units: h (hours), m (minutes), s (seconds),
ms (milliseconds)

S5T#4s ––> 4 seconds
S5T#1h_15m ––> 1 hour and 15 minutes
S5T#2h_46m_30s––>2 hours, 46 minutes, and
30 seconds

T 5

S_PULSE

R

Q
TV BI

BCD

S5T# 2s

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – x x x 1

I 0.1

Q 4.0

S

Timing Diagram

RLO at S input

RLO at R input

Timer running

Signal state check for 1

Signal state check for 0

Figure 9-3 S5 Pulse Timer

Example

Timer Instructions

9-7
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

9.4 Extended Pulse S5 Timer

The Extended Pulse S5 Timer instruction starts a specified timer if there is a
positive edge (that is, a change in signal state from 0 to 1) at the Start (S)
input. A signal change is always necessary to start a timer. The timer
continues to run with the specified time at the Time Value (TV) input, even if
the signal state at the S input changes to 0 before the time has elapsed. A
signal state check for 1 at output Q produces a result of 1 as long as the timer
is running. The timer is restarted with the specified time if the signal state at
input S changes from 0 to 1 while the timer is running.

A change from 0 to 1 at the Reset (R) input of the timer while the timer is
running resets the timer. This change also resets the time and the time base to
zero.

The actual time value can be scanned at the outputs BI and BCD. The time
value at BI is in binary coded format; at BCD it is in binary coded decimal
format.

Table 9-5 Extended Pulse S5 Timer Box and Parameters, with International Short Name

LAD Box Parameter Data Type Memory Area Description

 T no.
no. TIMER T

Timer identification number. The
range depends on the CPU.

S_PEXT S BOOL I, Q, M, D, L, T, C Start input

S Q TV S5TIME I, Q, M, D, L Preset time value (range 0 to 9999)

BCD

S
TV BI

Q
R BOOL I, Q, M, D, L, T, C Reset input

BCD

R
Q BOOL I, Q, M, D, L Status of the timer

R
BI WORD I, Q, M, D, L Remaining time value (integer format)

BCD WORD I, Q, M, D, L Remaining time value (BCD format)

Table 9-6 Extended Pulse S5 Timer Box and Parameters, with SIMATIC Short Name

LAD Box Parameter Data Type Memory Area Description

 T no.
no. TIMER T

Timer identification number. The
range depends on the CPU.

S_VIMP S BOOL I, Q, M, D, L, T, C Start input

S Q TW S5TIME I, Q, M, D, L Preset time value (range 0 to 9999)

DEZ

S
TW DUAL

Q
R BOOL I, Q, M, D, L, T, C Reset input

DEZ

R
Q BOOL I, Q, M, D, L Status of the timer

R
DUAL WORD I, Q, M, D, L Remaining time value (integer format)

DEZ WORD I, Q, M, D, L Remaining time value (BCD format)

Description

Timer Instructions

9-8
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Figure 9-4 shows the Extended Pulse S5 Timer instruction, describes the
status word bits, and shows the pulse timer characteristics. Certain
restrictions apply to the placement of timer boxes (see Section 6.1).

–– t –– –– t –– –– t ––

t = programmed time

Status Word Bits

Timing Diagram

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – x x x 1

If the signal state of input I 0.0 changes from 0 to 1
(that is, there is a positive edge in the RLO), timer T 5
is started. The timer continues to run with the
specified time of two seconds (2s) without regard to a
negative edge at input S. If the signal state of
input I 0.0 changes from 0 to 1 before the time has
elapsed, the timer is restarted. If the signal state of
input I 0.1 changes from 0 to 1 while the timer is
running, the timer is reset. The signal state of output
Q 4.0 is 1 as long as the timer is running (see also
Section 9.3).

I 0.0

T 5

S_PEXT

R

Q
TV BI

BCD

S5T# 2s
I 0.1

Q 4.0

S

RLO at S input

RLO at R input

Timer running

Signal state check for 1

Signal state check for 0

Figure 9-4 Extended Pulse S5 Timer

Example

Timer Instructions

9-9
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

9.5 On-Delay S5 Timer

The On-Delay S5 Timer instruction starts a specified timer if there is a
positive edge (that is, a change in signal state from 0 to 1) at the Start (S)
input. A signal change is always necessary to start a timer. The timer
continues to run with the specified time at the Time Value (TV) input as long
as the signal state at input S is 1. A signal state check for 1 at output Q
produces a result of 1 when the time has elapsed without error and when the
signal state at input S is still 1. When the signal state at input S changes from
1 to 0 while the timer is running, the timer is stopped. In this case, a signal
state check for 1 at output Q always produces the result 0.

A change from 0 to 1 at the Reset (R) input of the timer while the timer is
running resets the timer. This change also resets the time and the time base to
zero. The timer is also reset if the signal state is 1 at the R input while the
timer is not running.

The actual time value can be scanned at the outputs BI and BCD. The time
value at BI is in binary coded format; at BCD it is in binary coded decimal
format.

Certain restrictions apply to the placement of timer boxes (see Section 6.1).

Table 9-7 On-Delay S5 Timer Box and Parameters, with International Short Name

LAD Box Parameter Data Type Memory Area Description

 T no.
no. TIMER T

Timer identification number. The
range depends on the CPU.

S_ODT S BOOL I, Q, M, D, L, T, C Start input_

S Q TV S5TIME I, Q, M, D, L Preset time value (range 0 to 9999)

BCD

S
TV BI

Q
R BOOL I, Q, M, D, L, T, C Reset input

BCD

R
Q BOOL I, Q, M, D, L Status of the timer

R
BI WORD I, Q, M, D, L Remaining time value (integer format)

BCD WORD I, Q, M, D, L Remaining time value (BCD format)

Table 9-8 On-Delay S5 Timer Box and Parameters, with SIMATIC Short Name

LAD Box Parameter Data Type Memory Area Description

 T no.
no. TIMER T

Timer identification number. The
range depends on the CPU.

S_EVERZ S BOOL I, Q, M, D, L, T, C Start input_

S Q TW S5TIME I, Q, M, D, L Preset time value (range 0 to 9999)

DEZ

S
TW DUAL

Q
R BOOL I, Q, M, D, L, T, C Reset input

DEZ

R
Q BOOL I, Q, M, D, L Status of the timer

R
DUAL WORD I, Q, M, D, L Remaining time value (integer format)

DEZ WORD I, Q, M, D, L Remaining time value (BCD format)

Description

Timer Instructions

9-10
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

–– t –– –– t ––

t = programmed time

If the signal state of input I 0.0 changes from 0 to
1 (that is, there is a positive edge in the RLO),
timer T 5 is started. If the specified time of two
seconds (2s) elapses and the signal state of
input I 0.0 is still 1, the signal state of output
Q 4.0 is 1. If the signal state of input I 0.0
changes from 1 to 0, the timer is stopped and
output Q 4.0 is 0 (see also Section 9.3). If the
signal state of input I 0.1 changes from 0 to 1
while the timer is running, the timer is reset.

I 0.0

T 5

S_ODT

R

Q
TV BI

BCD

S5T# 2s
I 0.1

Q 4.0

S

Status Word Bits

Timing Diagram

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – x x x 1

RLO at S input

RLO at R input

Timer running

Signal state check for 1

Signal state check for 0

Figure 9-5 On-Delay S5 Timer

Timer Instructions

9-11
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

9.6 Retentive On-Delay S5 Timer

The Retentive On-Delay S5 Timer instruction starts a specified timer if there
is a positive edge (that is, a change in signal state from 0 to 1) at the Start (S)
input. A signal change is always necessary to start a timer. The timer
continues to run with the time that is specified at the Time Value (TV) input,
even if the signal state at input S changes to 0 before the timer has expired. A
signal state check for 1 at output Q produces a result of 1 when the time has
elapsed, without regard to the signal state at input S when the reset input (R)
remains at “0”. The timer is restarted with the specified time if the signal
state at input S changes from 0 to 1 while the timer is running.

A change from 0 to 1 at the Reset (R) input of the timer resets the timer
without regard to the RLO at the S input.

Table 9-9 Retentive On-Delay S5 Timer Box and Parameters, with International Short Name

LAD Box Parameter Data Type Memory Area Description

 T no.
no. TIMER T

Timer identification number. The
range depends on the CPU.

S_ODTS S BOOL I, Q, M, D, L, T, C Start input

S Q TV S5TIME I, Q, M, D, L Preset time value (range 0 to 9999)

BCD
TV BI R BOOL I, Q, M, D, L, T, C Reset input

BCD

R
Q BOOL I, Q, M, D, L Status of the timer

R
BI WORD I, Q, M, D, L Remaining time value (integer format)

BCD WORD I, Q, M, D, L Remaining time value (BCD format)

Table 9-10 Retentive On-Delay S5 Timer Box and Parameters, with SIMATIC Short Name

LAD Box Parameter Data Type Memory Area Description

 T no.
no. TIMER T

Timer identification number. The
range depends on the CPU.

S_SEVERZ S BOOL I, Q, M, D, L, T, C Start input

S Q TW S5TIME I, Q, M, D, L Preset time value (range 0 to 9999)

DEZ
TW DUAL R BOOL I, Q, M, D, L, T, C Reset input

DEZ

R
Q BOOL I, Q, M, D, L Status of the timer

R
DUAL WORD I, Q, M, D, L Remaining time value (integer format)

DEZ WORD I, Q, M, D, L Remaining time value (BCD format)

Description

Timer Instructions

9-12
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Figure 9-6 shows the Retentive On-Delay S5 Timer instruction, describes the
status word bits, and shows the pulse timer characteristics. Certain
restrictions apply to the placement of timer boxes (see Section 6.1).

–– t –– –– t ––

t = programmed time

–– t ––

If the signal state of input I 0.0 changes from 0
to 1 (that is, there is a positive edge in the RLO),
timer T 5 is started. The timer continues to run
without regard to a signal change of input I 0.0
from1 to 0. If the signal state of input I 0.0
changes from 0 to 1 before the time has
elapsed, the timer is restarted. If the signal state
of input I 0.1 changes from 0 to 1 while the timer
is running, the timer is reset. The signal state of
output Q 4.0 is 1 if the time has elapsed and
I 0.1 remains on 0 (see also Section 9.3).

I 0.0

T 5

S_ODTS

R

Q
TV BI

BCD

S5T# 2s
I 0.1

Q 4.0

S

RLO at S input

RLO at R input

Timer running

Signal state check for 1

Signal state check for 0

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – x x x 1

Status Word Bits

Timing Diagram

Figure 9-6 Retentive On-Delay S5 Timer

Example

Timer Instructions

9-13
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

9.7 Off-Delay S5 Timer

The Off-Delay S5 Timer instruction starts a specified timer if there is a
negative edge (that is, a change in signal state from 1 to 0) at the Start (S)
input. A signal change is always necessary to start a timer. The result of a
signal state check for 1 at output Q is 1 when the signal state at the S input is
1 or when the timer is running. The timer is reset when the signal state at
input S goes from 0 to 1 while the timer is running. The timer is not restarted
until the signal state at input S changes again from 1 to 0.

A change from 0 to 1 at the Reset (R) input of the timer while the timer is
running resets the timer.

The actual time value can be scanned at the outputs BI and BCD. The time
value at BI is in binary coded format; at BCD it is in binary coded decimal
format.

Certain restrictions apply to the placement of timer boxes (see Section 6.1).

Table 9-11 Off-Delay S5 Timer Box and Parameters, with International Short Name

LAD Box Parameter Data Type Memory Area Description

 T no.
no. TIMER T

Timer identification number. The
range depends on the CPU. T no.

S_OFFDT S BOOL I, Q, M, D, L, T, C Start inputS_OFFDT

S Q
TV S5TIME I, Q, M, D, L Preset time value (range 0 to 9999)

S
TV BI

Q
R BOOL I, Q, M, D, L, T, C Reset input

BCD

R
Q BOOL I, Q, M, D, L Status of the timer

R
BI WORD I, Q, M, D, L Remaining time value (integer format)

BCD WORD I, Q, M, D, L Remaining time value (BCD format)

Table 9-12 Off-Delay S5 Timer Box and Parameters, with SIMATIC Short Name

LAD Box Parameter Data Type Memory Area Description

 T no.
no. TIMER T

Timer identification number. The
range depends on the CPU. T no.

S_AVERZ S BOOL I, Q, M, D, L, T, C Start inputS_AVERZ

S Q
TW S5TIME I, Q, M, D, L Preset time value (range 0 to 9999)

S

TW DUAL
Q

R BOOL I, Q, M, D, L, T, C Reset input

DEZ

R
Q BOOL I, Q, M, D, L Status of the timer

R
DUAL WORD I, Q, M, D, L Remaining time value (integer format)

DEZ WORD I, Q, M, D, L Remaining time value (BCD format)

Description

Timer Instructions

9-14
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Figure 9-7 shows the Off-Delay S5 Timer instruction, describes the status
word bits, and shows the pulse timer characteristics.

If the signal state of input I 0.0 changes from 1 to 0
(that is, there is a negative edge in the RLO), the
timer is started. The signal state of output Q 4.0 is 1
when the signal state of I 0.0 is 1 or the timer is
running (see also Section 9.3). If the signal state of
input I 0.1 changes from 0 to 1 while the timer is
running, the timer is reset.

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – x x x 1

Timing Diagram

RLO at S input

RLO at R input

Timer running

Signal state check for 1

Signal state check for 0

t = programmed time

–– t –– –– t ––

I 0.0

T 5

S_OFFDT

R

Q
TV BI

BCD

S5T# 2s
I 0.1

Q 4.0

S

Figure 9-7 Off-Delay S5 Timer

Example

Timer Instructions

10-1
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Counter Instructions

Section Description Page

10.1 Location of a Counter in Memory and Components of a
Counter

10-2

10.2 Up-Down Counter 10-3

10.3 Up Counter 10-5

10.4 Down Counter 10-7

Chapter Overview

10

10-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

10.1 Location of a Counter in Memory and Components of a Counter

Counters have an area reserved for them in the memory of your CPU. This
memory area reserves one 16-bit word for each counter address. The ladder
logic instruction set supports 256 counters.

The counter instructions are the only functions that have access to the
counter memory area.

Bits 0 through 9 of the counter word contain the count value in binary code.
The count value is moved to the counter word when a counter is set. The
range of the count value is 0 to 999. You can vary the count value within this
range by using the Up-Down Counter, Up Counter, and Down Counter
instructions.

You provide a counter with a preset value by entering a number from 0 to
999, for example 127, in the following format:

C#127

The C# stands for binary coded decimal format (BCD format: each set of
four bits contains the binary code for one decimal value).

Bits 0 through 11 of the counter contain the count value in binary coded
decimal format . Figure 10-1 shows the contents of the counter after you have
loaded the count value 127, and the contents of the counter cell after the
counter has been set.

Irrelevant

15

1 2 7

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 111 10000000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 110 111100

irrelevant Binary count value

Count value in BCD (0 to 999)

Figure 10-1 Contents of the Counter Cell after the Counter has been set with Count
Value 127

Area in Memory

Count Value

Bit Configuration
in the Counter

Counter Instructions

10-3
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

10.2 Up-Down Counter

A positive edge (i.e. a change in signal state from 0 to 1) at input S of the
Up-Down Counter instruction sets the counter with the value at the Preset
Value (PV) input. A signal state of 1 at input R resets the counter. Resetting
the counter places the value of the count at 0. The counter is incremented by
1 if the signal state at input CU changes from 0 to 1 (that is, there is a
positive edge) and the value of the counter is less than 999. The counter is
decremented by 1 if the signal state at input CD changes from 0 to 1 (that is,
there is a positive edge) and the value of the counter is more than 0. If there
is a positive edge at both count inputs, both operations are executed and the
count remains the same. A signal state check for 1 at output Q produces a
result of 1 when the count is greater than 0; the check produces a result of 0
when the count is equal to 0.

Certain restrictions apply to the placement of the counter boxes (see
Section 6.1).

Table 10-1 Up-Down Counter Box and Parameters, with International Short Name

LAD Box Parameter Data Type Memory Area Description

C

no. COUNTER C
Counter identification number. The range
depends on the CPU.

C no
CU BOOL I, Q, M, D, L Count up input CU

 C no.

S CUD
CD BOOL I, Q, M, D, L Count down input CD

S_CUD

QCU S BOOL I, Q, M, D, L Set input for presetting counter

CV

QCU
CD
S
PV

PV WORD I, Q, M, D, L Value in the range of 0 to 999 for
presetting counter (entered as
C#<value> to indicate BCD format)

CV_BCD
R

R BOOL I, Q, M, D, L Reset input
R

Q BOOL I, Q, M, D, L Status of the counter

CV WORD I, Q, M, D, L Current counter value (integer format)

CV_BCD WORD I, Q, M, D, L Current counter value (BCD format)

Description

Counter Instructions

10-4
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Table 10-2 Up-Down Counter Box and Parameters, with SIMATIC Short Name

LAD Box Parameter Data Type Memory Area Description

Z

no. COUNTER C
Counter identification number. The range
depends on the CPU.

Z no
ZV BOOL I, Q, M, D, L Count up input ZV

 Z no.

ZAEHLER
ZR BOOL I, Q, M, D, L Count down input ZR

ZAEHLER
QZV S BOOL I, Q, M, D, L Set input for presetting counter

DUAL

QZV
ZR
S
ZW

ZW WORD I, Q, M, D, L Value in the range of 0 to 999 for
presetting counter (entered as
C#<value> to indicate BCD format)

DEZR
R BOOL I, Q, M, D, L Reset input

R
Q BOOL I, Q, M, D, L Status of the counter

DUAL WORD I, Q, M, D, L Current counter value (integer format)

DEZ WORD I, Q, M, D, L Current counter value (BCD format)

A change in signal state from 0 to 1 at input
I 0.2 sets counter C 10 with the value 55 in
binary coded decimal format. If the signal state
of input I 0.0 changes from 0 to 1, the value of
counter C 10 is increased by 1, except when
the value of counter C 10 is equal to 999. If
input I 0.1 changes from 0 to 1, counter C 10 is
decreased by 1, except when the value of
counter C 10 is equal to 0. If I 0.3 changes from
0 to 1, the value of C 10 is set to 0.
Q 4.0 is 1, when C 10 is not equal to “0”.

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – x x x 1

 C 10

S_CUD

CV

QCU

CD

CV_BCD

S

PV

R

I 0.0 Q 4.0

I 0.1

I 0.2

C#55

I 0.3

Figure 10-2 Up-Down Counter

Counter Instructions

10-5
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

10.3 Up Counter

A positive edge (i.e. a change in signal state from 0 to 1) at input S of the Up
Counter instruction sets the counter with the value at the Preset Value (PV)
input. With a positive edge, the counter is reset at input R. The resetting of
the counter sets the count value to 0. With a positive edge, the value of the
counter at input CU is increased by 1 when the count value is less than 999.
A signal state check for 1 at output Q produces a result of 1 when the count is
greater than 0; the check produces a result of 0 when the count is equal to 0.

Certain restrictions apply to the placement of the counter boxes (see
Section 6.1).

Table 10-3 Up Counter Box and Parameters, with International Short Name

LAD Box Parameter Data Type Memory Area Description

 C no.
no. COUNTER C

Counter identification number. The range
depends on the CPU.

 C no.

S_CU CU BOOL I, Q, M, D, L Count up input CUS_CU

QCU S BOOL I, Q, M, D, L Set input for presetting counter

CV
S
PV

PV WORD I, Q, M, D, L
Value in the range of 0 to 999 for
presetting counter (entered as
C#<value> to indicate BCD format)

CV_BCD
R

R BOOL I, Q, M, D, L Reset input
R

Q BOOL I, Q, M, D, L Status of the counter

CV WORD I, Q, M, D, L Current counter value (integer format)

CV_BCD WORD I, Q, M, D, L Current counter value (BCD format)

Description

Counter Instructions

10-6
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Table 10-4 Up Counter Box and Parameters, with SIMATIC Short Name

LAD Box Parameter Data Type Memory Area Description

 Z no.
no. COUNTER C

Counter identification number. The range
depends on the CPU.

 Z no.

Z_VORW ZV BOOL I, Q, M, D, L Count up input ZVZ_VORW

QZV S BOOL I, Q, M, D, L Set input for presetting counter

DUAL
S
ZW

ZW WORD I, Q, M, D, L
Value in the range of 0 to 999 for
presetting counter (entered as
C#<value> to indicate BCD format)

DEZ
R

R BOOL I, Q, M, D, L Reset input
R

Q BOOL I, Q, M, D, L Status of the counter

DUAL WORD I, Q, M, D, L Current counter value (integer format)

DEZ WORD I, Q, M, D, L Current counter value (BCD format)

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – x x x 1

A change in signal state from 0 to 1 at
input I 0.2 sets counter C 10 with the
value 901 in binary coded decimal
format. If the signal state of I 0.0 changes
from 0 to 1, the value of counter C 10 is
increased by 1, unless the value of C 10
is equal to 999. If I 0.3 changes from 0
to 1, the value of C 10 is set to 0. The
signal state of output Q 4.0 is 1 if C 10 is
not equal to 0.

 C 10

S_CU

CV

QCU

CV_BCD

S

PV

R

I 0.0 Q 4.0

I 0.2

C#901
I 0.3

Figure 10-3 Up Counter

Counter Instructions

10-7
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

10.4 Down Counter

A positive edge (that is, a change in signal state from 0 to 1) at input S of the
Down Counter instruction sets the counter with the value at the Preset Value
(PV) input. With a positive edge, the counter is reset at input R. The resetting
of the counter sets the count value to 0. With a positive edge, the value of the
counter at the input is reduced by 1 when the count value is greater than 0. A
signal state check for 1 at output Q produces a result of 1 when the count is
greater than 0; the check produces a result of 0 when the count is equal to 0.

Certain restrictions apply to the placement of the counter boxes (see
Section 6.1).

Table 10-5 Down Counter Box and Parameters, with International Short Name

LAD Box Parameter Data Type Memory Area Description

C

no. COUNTER C
Counter identification number. The range
depends on the CPU.

 C no.

S CD
CD BOOL I, Q, M, D, L Count down input CD

S_CD

QCD
S BOOL I, Q, M, D, L Set input for presetting counter

CV

QCD

S
PV

PV WORD I, Q, M, D, L
Value in the range of 0 to 999 for
presetting counter (entered as
C#<value> to indicate BCD format)CV

CV_BCD
PV

R
R BOOL I, Q, M, D, L Reset input

R Q BOOL I, Q, M, D, L Status of the counter

CV WORD I, Q, M, D, L Current counter value (integer format)

CV_BCD WORD I, Q, M, D, L Current counter value (BCD format)

Description

Counter Instructions

10-8
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Table 10-6 Down Counter Box and Parameters, with SIMATIC Short Name

LAD Box Parameter Data Type Memory Area Description

Z

no. COUNTER C
Counter identification number. The range
depends on the CPU.

 Z no.

Z RUECK
ZR BOOL I, Q, M, D, L Count down input ZR

Z_RUECK

QZR
S BOOL I, Q, M, D, L Set input for presetting counter

DUAL

QZR

S
ZW

ZW WORD I, Q, M, D, L
Value in the range of 0 to 999 for
presetting counter (entered as
C#<value> to indicate BCD format)DUAL

DEZ
ZW

R
R BOOL I, Q, M, D, L Reset input

R Q BOOL I, Q, M, D, L Status of the counter

DUAL WORD I, Q, M, D, L Current counter value (integer format)

DEZ WORD I, Q, M, D, L Current counter value (BCD format)

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – x x x 1

A change in signal state from 0 to 1 at input I 0.2
sets counter C 10 with the value 89 in binary
coded decimal format. If the signal state of input
I 0.0 changes from 0 to 1, the value of counter
C 10 is decreased by 1, unless the value of
counter C 10 is equal to 0. The signal state of
output Q 4.0 is 1 if counter C 10 is not equal to 0.
If I 0.3 changes from 0 to 1, the value of C 10 is
set to 0.

 C 10

S_CD

CV

QCD

CV_BCD

S

PV

R

I 0.0 Q 4.0

I 0.2

C#89
I 0.3

Figure 10-4 Down Counter

Counter Instructions

11-1
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Integer Math Instructions

Section Description Page

11.1 Add Integer 11-2

11.2 Add Double Integer 11-3

11.3 Subtract Integer 11-4

11.4 Subtract Double Integer 11-5

11.5 Multiply Integer 11-6

11.6 Multiply Double Integer 11-7

11.7 Divide Integer 11-8

11.8 Divide Double Integer 11-9

11.9 Return Fraction Double Integer 11-10

11.10 Evaluating the Bits of the Status Word After Integer Math
Instructions

11-11

Chapter Overview

11

11-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

11.1 Add Integer

A signal state of 1 at the Enable (EN) input activates the Add Integer
instruction. This instruction adds inputs IN1 and IN2. The result can be
scanned at OUT. If the result is outside the permissible range for an integer,
the OV and OS bit of the status word are 1 and the ENO is 0.

Certain restrictions apply to the placement of integer math boxes (see
Section 6.1).

Table 11-1 Add Integer Box and Parameters

LAD Box Parameter Data Type Memory Area Description

ADD I
EN BOOL I, Q, M, D, L Enable input

ADD_I

EN ENO
ENO BOOL I, Q, M, D, L Enable output

IN1

EN ENO
IN1 INT I, Q, M, D, L First value for addition

IN1

IN2 OUT
IN2 INT I, Q, M, D, L Second value for addition

IN2 OUT
OUT INT I, Q, M, D, L Result of addition

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x x x x x x 1 x x

I 0.0 A signal state of 1 at input I 0.0 activates
the ADD_I box. The result of the addition
MW0 + MW2 is put into memory word
MW10. If the result is outside the
permissible range for an integer or the
signal state of input I 0.0 is 0, output Q 4.0
is set.

Q 4.0ADD_I

IN2

EN ENO

MW2 MW10

IN1MW0

S

Function is executed (EN = 1):

NOT

OUT

Figure 11-1 Add Integer

Description

Integer Math Instructions

11-3
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

11.2 Add Double Integer

A signal state of 1 at the Enable (EN) input activates the Add Double Integer
instruction. This instruction adds inputs IN1 and IN2. The result can be
scanned at OUT. If the result is outside the permissible range for a double
integer, the OV and the OS bit of the status word are 1 and the ENO is 0.

Certain restrictions apply to the placement of integer math boxes (see
Section 6.1).

Table 11-2 Add Double Integer Box and Parameters

LAD Box Parameter Data Type Memory Area Description

ADD DI
EN BOOL I, Q, M, D, L Enable input

ADD_DI

EN ENO
ENO BOOL I, Q, M, D, L Enable output

IN1

EN ENO
IN1 DINT I, Q, M, D, L First value for addition

IN1

IN2 OUT
IN2 DINT I, Q, M, D, L Second value for addition

IN2 OUT
OUT DINT I, Q, M, D, L Result of addition

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x x x x x x 1 x x

I 0.0 A signal state of 1 at input I 0.0 activates
the ADD_DI box. The result of the addition
MD0 + MD4 is put into memory double
word MD10. If the result is outside the
permissible range for a double integer or
the signal state of input I 0.0 is 0, output
Q 4.0 is set.

Q 4.0ADD_DI

IN2

EN ENO

MD4 MD10

IN1MD0

S

Function is executed (EN = 1):

NOT

OUT

Figure 11-2 Add Double Integer

Description

Integer Math Instructions

11-4
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

11.3 Subtract Integer

A signal state of 1 at the Enable (EN) input activates the Subtract Integer
instruction. This instruction subtracts input IN2 from IN1. The result can be
scanned at OUT. If the result is outside the permissible range for an integer,
the OV and the OS bit of the status word are 1 and the ENO is 0.

Certain restrictions apply to the placement of integer math boxes (see
Section 6.1).

Table 11-3 Subtract Integer Box and Parameters

LAD Box Parameter Data Type Memory Area Description

SUB I
EN BOOL I, Q, M, D, L Enable input

SUB_I

EN ENO
ENO BOOL I, Q, M, D, L Enable output

IN1

EN ENO
IN1 INT I, Q, M, D, L First value (from which to subtract)

IN1

IN2 OUT
IN2 INT I, Q, M, D, L Value to subtract from first value

IN2 OUT
OUT INT I, Q, M, D, L Result of subtraction

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x x x x x x 1 x x

I 0.0
A signal state of 1 at input I 0.0 activates the
SUB_I box. The result of the subtraction
MW0 – MW2 is put into memory word MW10.
If the result is outside the permissible range
for an integer or the signal state of input I 0.0
is 0, output Q 4.0 is set.

Q 4.0SUB_I

IN2

EN ENO

MW2 MW10

IN1MW0

S

Function is executed (EN = 1):

NOT

OUT

Figure 11-3 Subtract Integer

Description

Integer Math Instructions

11-5
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

11.4 Subtract Double Integer

A signal state of 1 at the Enable (EN) input activates the Subtract Double
Integer instruction. This instruction subtracts input IN2 from IN1. The result
can be scanned at OUT. If the result is outside the permissible range for a
double integer, the OV and the OS bit of the status word are 1 and the ENO
is 0.

Certain restrictions apply to the placement of integer math boxes (see
Section 6.1).

Table 11-4 Subtract Double Integer Box and Parameters

LAD Box Parameter Data Type Memory Area Description

SUB DI
EN BOOL I, Q, M, D, L Enable input

SUB_DI

EN ENO
ENO BOOL I, Q, M, D, L Enable output

IN1

EN ENO
IN1 DINT I, Q, M, D, L First value (from which to subtract)

IN1

IN2 OUT
IN2 DINT I, Q, M, D, L Value to subtract from first value

IN2 OUT
OUT DINT I, Q, M, D, L Result of subtraction

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x x x x x x 1 x x

I 0.0
A signal state of 1 at input I 0.0 activates the
SUB_DI box. The result of the subtraction
MD0 – MD4 is put into memory double word
MD10. If the result is outside the permissible
range for a double integer or the signal state
of input I 0.0 is 0, output Q 4.0 is set.

Q 4.0SUB_DI

IN2

EN ENO

MD4 MD10

IN1MD0

S

Function is executed (EN = 1):

NOT

OUT

Figure 11-4 Subtract Double Integer

Description

Integer Math Instructions

11-6
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

11.5 Multiply Integer

A signal state of 1 at the Enable (EN) input activates the Multiply Integer
instruction. This instruction multiplies inputs IN1 and IN2. The result is a
32-bit integer that can be scanned at OUT. If the result is outside the
permissible range for a 16-bit integer, the OV and the OS bit of the status
word are 1 and the ENO is 0.

Certain restrictions apply to the placement of integer math boxes (see
Section 6.1).

Table 11-5 Multiply Integer Box and Parameters

LAD Box Parameter Data Type Memory Area Description

MUL I
EN BOOL I, Q, M, D, L Enable input

MUL_I

EN ENO
ENO BOOL I, Q, M, D, L Enable output

IN1

EN ENO
IN1 INT I, Q, M, D, L First value for multiplication

IN1

IN2 OUT
IN2 INT I, Q, M, D, L Second value for multiplication

IN2 OUT
OUT DINT I, Q, M, D, L Result of multiplication

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x x x x x x 1 x x

I 0.0 A signal state of 1 at input I 0.0 activates the
MUL_I box. The result of the multiplication
MW0 x MW2 is put into memory double word
MD10. If the result is outside the permissible
range for a 16-bit integer or the signal state
of input I 0.0 is 0, output Q 4.0 is set.

Q 4.0MUL_I

IN2

EN ENO

MW2 MD10

IN1MW0

S

Function is executed (EN = 1):

NOT

OUT

Figure 11-5 Multiply Integer

Description

Integer Math Instructions

11-7
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

11.6 Multiply Double Integer

A signal state of 1 at the Enable (EN) input activates the Multiply Double
Integer instruction. This instruction multiplies inputs IN1 and IN2. The result
can be scanned at OUT. If the result is outside the permissible range for a
double integer, the OV and the OS bit of the status word are 1 and the ENO is
0.

Certain restrictions apply to the placement of integer math boxes (see
Section 6.1).

Table 11-6 Multiply Double Integer Box and Parameters

LAD Box Parameter Data Type Memory Area Description

MUL DI
EN BOOL I, Q, M, D, L Enable input

MUL_DI

EN ENO
ENO BOOL I, Q, M, D, L Enable output

IN1

EN ENO
IN1 DINT I, Q, M, D, L First value for multiplication

IN1

IN2 OUT
IN2 DINT I, Q, M, D, L Second value for multiplication

IN2 OUT
OUT DINT I, Q, M, D, L Result of multiplication

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x x x x x x 1 x x

I 0.0
A signal state of 1 at input I 0.0 activates the
MUL_DI box. The result of the multiplication
MD0 x MD4 is put into memory double word
MD10. If the result is outside the permissible
range for a double integer or the signal state of
input I 0.0 is 0, output Q 4.0 is set.

Q 4.0MUL_DI

IN2

EN ENO

MD4 MD10

IN1MD0

S

Function is executed (EN = 1):

NOT

OUT

Figure 11-6 Multiply Double Integer

Description

Integer Math Instructions

11-8
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

11.7 Divide Integer

A signal state of 1 at the Enable (EN) input activates the Divide Integer
instruction. This instruction divides input IN1 by IN2. The integer quotient
(truncated result) can be scanned at OUT. The remainder cannot be scanned.
If the quotient is outside the permissible range for an integer, the OV and the
OS bit of the status word are 1 and the ENO is 0.

Certain restrictions apply to the placement of integer math boxes (see
Section 6.1).

Table 11-7 Divide Integer Box and Parameters

LAD Box Parameter Data Type Memory Area Description

DIV I
EN BOOL I, Q, M, D, L Enable input

DIV_I

EN ENO
ENO BOOL I, Q, M, D, L Enable output

IN1

EN ENO
IN1 INT I, Q, M, D, L Dividend

IN1

IN2 OUT
IN2 INT I, Q, M, D, L Divisor

IN2 OUT
OUT INT I, Q, M, D, L Result of division

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x x x x x x 1 x x

I 0.0 A signal state of 1 at input I 0.0 activates the
DIV_I box. The quotient of dividing MW0 by
MW2 is put into memory word MW10. If the
quotient is outside the permissible range for
an integer or the signal state of input I 0.0
is 0, output Q 4.0 is set.

Q 4.0DIV_I

IN2

EN ENO

MW2 MW10

IN1MW0

S

Function is executed (EN = 1):

NOT

OUT

Figure 11-7 Divide Integer

Description

Integer Math Instructions

11-9
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

11.8 Divide Double Integer

A signal state of 1 at the Enable (EN) input activates the Divide Double
Integer instruction. This instruction divides input IN1 by IN2. The quotient
(truncated result) can be scanned at OUT. The Divide Double Integer
instruction stores the quotient as a single 32-bit value in DINT format. This
instruction does not produce a remainder. If the quotient is outside the
permissible range for a double integer, the OV and the OS bit of the status
word are 1 and the ENO is 0.

Certain restrictions apply to the placement of integer math boxes (see
Section 6.1).

Table 11-8 Divide Double Integer Box and Parameters

LAD Box Parameter Data Type Memory Area Description

DIV DI
EN BOOL I, Q, M, D, L Enable input

DIV_DI

EN ENO
ENO BOOL I, Q, M, D, L Enable output

IN1

EN ENO
IN1 DINT I, Q, M, D, L Dividend

IN1

IN2 OUT
IN2 DINT I, Q, M, D, L Divisor

IN2 OUT
OUT DINT I, Q, M, D, L Result of division

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x x x x x x 1 x x

I 0.0 A signal state of 1 at input I 0.0 activates
the DIV_DI box. The quotient of dividing
MD0 by MD4 is put into memory double
word MD10. If the quotient is outside the
permissible range for a double integer or
the signal state of input I 0.0 is 0, output
Q 4.0 is set.

Q 4.0DIV_DI

IN2

EN ENO

MD4 MD10

IN1MD0

S

Function is executed (EN = 1):

NOT

OUT

Figure 11-8 Divide Double Integer

Description

Integer Math Instructions

11-10
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

11.9 Return Fraction Double Integer

A signal state of 1 at the Enable (EN) input activates the Return Fraction
Double Integer instruction. This instruction divides input IN1 by IN2. The
remainder (fraction) can be scanned at OUT. If the result is outside the
permissible range for a double integer, the OV and the OS bit of the status
word are 1 and the ENO is 0.

Certain restrictions apply to the placement of integer math boxes (see
Section 6.1).

Table 11-9 Return Fraction Double Integer Box and Parameters

LAD Box Parameter Data Type Memory Area Description

MOD
EN BOOL I, Q, M, D, L Enable input

MOD

EN ENO
ENO BOOL I, Q, M, D, L Enable output

IN1

EN ENO
IN1 DINT I, Q, M, D, L Dividend

IN1

IN2 OUT
IN2 DINT I, Q, M, D, L Divisor

IN2 OUT
OUT DINT I, Q, M, D, L Remainder

Status Word Bits

I 0.0 A signal state of 1 at input I 0.0 activates
the MOD box. The remainder (fraction) of
dividing MD0 by MD4 is stored in memory
double word MD10. If the result is outside
the permissible range for a double integer
or the signal state of input I 0.0 is 0, output
Q 4.0 is set.

Q 4.0MOD

IN2

EN ENO

MD4 MD10

IN1MD0

S

Function is executed (EN = 1):

NOT

OUT

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x x x x x x 1 x x

Figure 11-9 Return Fraction Double Integer

Description

Integer Math Instructions

11-11
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

11.10 Evaluating the Bits of the Status Word After Integer Math
Instructions

The basic math instructions affect the following bits in the status word:

� CC 1 and CC 0

� OV

� OS

A dash (-) in the table means that the bit is not affected by the result of the
instruction.

Table 11-10 Signal State of the Status Word Bits: Result in Valid Range

Valid Range for the Result with Integers Status Word Bitsg g
(16 and 32 bits) CC 1 CC 0 OV OS

0 (zero) 0 0 0 -

16 bits: -32 768 � � result � 0 (negative number)
32 bits: -2 147 483 648 � � result � 0 (negative
number)

0 1 0 -

16 bits: 32 767 � result �0 (positive number)
32 bits: 2 147 483 647 � result �0 (positive
number)

1 0 0 -

Table 11-11 Signal State of the Status Word Bits: Result not in Valid Range

Invalid Range for the Result with Integers Status Word Bitsg g
(16 and 32 bits) CC 1 CC 0 OV OS

16 bits: result �� 32 767 (positive number)
32 bits: result �� 2 147 483 647 (positive number)

1 0 1 1

16 bits: result � -32 768 (negative number)
32 bits: result � -2 147 483 648 (negative number)

0 1 1 1

Table 11-12 Signal State of the Status Word Bits: Integer Math Instructions
(32 Bits) +D, /D and MOD

Instruction
Status Word Bits

Instruction
CC 1 CC 0 OV OS

+D: result = -4 294 967 296 0 0 1 1

/D or MOD: division by 0 1 1 1 1

Integer Math Instructions

11-12
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Integer Math Instructions

12-1
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Floating-Point Math Instructions

Section Description Page

12.1 Overview 12-2

12.2 Add Floating-Point Numbers 12-3

12.3 Subtract Floating-Point Numbers 12-4

12.4 Multiply Floating-Point Numbers 12-5

12.5 Divide Floating-Point Numbers 12-6

12.6 Evaluating the Bits of the Status Word After Floating-Point
Instructions

12-7

12.7 Establishing the Absolute Value of a Floating-Point Number 12-8

12.8 Establishing the Square and/or the Square Root of a
Floating-Point Number

12-9

12.9 Establishing the Natural Logarithm of a Floating-Point
Number

12-11

12.10 Establishing the Exponential Value of a Floating-Point
Number

12-12

12.11 Establishing the Trigonometrical Functions of Angles as
Floating-Point Numbers

12-13

Chapter Overview

12

12-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

12.1 Overview

You can use the floating-point math instructions to perform the following
math instructions using two 32-bit IEEE floating-point numbers:

� Add

� Subtract

� Multiply

� Divide

The IEEE 32-bit floating-point numbers belong to the data type called
REAL. For information on the format of floating-point (real) numbers, see
Appendix C.

Using floating-point math, you can carry out the following operations with
one 32-bit IEEE floating-point number:

� Establish the square (SQR) and the square root (SQRT) of a floating-point
number

� Establish the natural logarithm (LN) of a floating-point number

� Establish the exponential value (EXP) of a floating-point number to base
e (= 2.71828...)

� Establish the following trigonometrical functions of an angle represented
as a 32-bit IEEE floating-point number:

– Establish the sine of a floating-point number (SIN) and establish the
arc sine of a floating-point number (ASIN)

– Establish the cosine of a floating-point number (COS) and establish
the arc cosine of a floating-point number (ACOS)

– Establish the tangent of a floating-point number (TAN) and establish
the arc tangent of a floating-point number (ATAN)

Floating-Point Math Instructions

12-3
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

12.2 Add Floating-Point Numbers

A signal state of 1 at the Enable (EN) input activates the Add Floating-Point
Numbers instruction. This instruction adds inputs IN1 and IN2. The result
can be scanned at OUT. If the result is outside the permissible range for a
floating-point number (overflow or underflow), the OV and the OS bit of the
status word are 1 and ENO is 0. You will find information on evaluating the
displays in the status word in Section 12.6.

Certain restrictions apply to the placement of floating-point math boxes (see
Section 6.1).

Table 12-1 Add Real Box and Parameters

LAD Box Parameter Data Type Memory Area Description

ADD R
EN BOOL I, Q, M, D, L Enable input

ADD_R

EN ENO
ENO BOOL I, Q, M, D, L Enable output

IN1

EN ENO
IN1 REAL I, Q, M, D, L First value for addition

IN1

IN2 OUT
IN2 REAL I, Q, M, D, L Second value for addition

IN2 OUT
OUT REAL I, Q, M, D, L Result of addition

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x x x x x x 1 x x

I 0.0 A signal state of 1 at input I 0.0 activates
the ADD_R box. The result of the addition
MD0 + MD4 is put into memory double
word MD10. If the result is outside the
permissible range for a real number or the
signal state of input I 0.0 is 0, output Q 4.0
is set.

Q 4.0ADD_R

IN2

EN ENO

MD4 MD10

IN1MD0

S

Function is executed (EN = 1):

NOT

OUT

Figure 12-1 Add Real

Description

Floating-Point Math Instructions

12-4
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

12.3 Subtract Floating-Point Numbers

A signal state of 1 at the Enable (EN) input activates the Subtract
Floating-Point Numbers instruction. This instruction subtracts input IN2 from
IN1. The result can be scanned at OUT. If the result is outside the permissible
range for a floating-point number (overflow or underflow), the OV and the
OS bit of the status word is 1 and ENO is 0. You will find information on
evaluating the displays in the status word in Section 12.6.

Certain restrictions apply to the placement of floating-point math boxes (see
Section 6.1).

Table 12-2 Subtract Real Box and Parameters

LAD Box Parameter Data Type Memory Area Description

SUB R
EN BOOL I, Q, M, D, L Enable input

SUB_R

EN ENO
ENO BOOL I, Q, M, D, L Enable output

IN1

EN ENO
IN1 REAL I, Q, M, D, L First value (from which to subtract)

IN1

IN2 OUT
IN2 REAL I, Q, M, D, L Value to subtract from first value

IN2 OUT
OUT REAL I, Q, M, D, L Result of subtraction

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x x x x x x 1 x x

I 0.0 A signal state of 1 at input I 0.0 activates the
SUB_R box. The result of the subtraction
MD0 – MD4 is put into memory double word
MD10. If the result is outside the permissible
range for a real number or the signal state of
input I 0.0 is 0, output Q 4.0 is set.

Q 4.0SUB_R

IN2

EN ENO

MD4 MD10

IN1MD0

S

Function is executed (EN = 1):

NOT

OUT

Figure 12-2 Subtract Real

Description

Floating-Point Math Instructions

12-5
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

12.4 Multiply Floating-Point Numbers

A signal state of 1 at the Enable (EN) input activates the Multiply
Floating-Point Numbers instruction. This instruction multiplies inputs IN1
and IN2. The result can be scanned at OUT. If the result is outside the
permissible range for a floating-point number (overflow or underflow), the
OV and the OS bit of the status word are 1 and ENO is 0. You will find
information on evaluating the displays in the status word in Section 12.6.

Certain restrictions apply to the placement of floating-point math boxes (see
Section 6.1).

Table 12-3 Multiply Real Box and Parameters

LAD Box Parameter Data Type Memory Area Description

MUL R
EN BOOL I, Q, M, D, L Enable input

MUL_R

EN ENO
ENO BOOL I, Q, M, D, L Enable output

IN1

EN ENO
IN1 REAL I, Q, M, D, L First value for multiplication

IN1

IN2 OUT
IN2 REAL I, Q, M, D, L Second value for multiplication

IN2 OUT
OUT REAL I, Q, M, D, L Result of multiplication

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Read * – – * – * – * *
Write x x x x x x 1 x x

I 0.0
A signal state of 1 at input I 0.0 activates the
MUL_R box. The result of the multiplication
MD0 x MD4 is put into memory double word
MD10. If the result is outside the permissible
range for a real number or the signal state of
input I 0.0 is 0, output Q 4.0 is set.

Q 4.0MUL_R

IN2

EN ENO

MD4 MD10

IN1MD0

S

Function is executed (EN = 1):

NOT

OUT

Figure 12-3 Multiply Real

Description

Floating-Point Math Instructions

12-6
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

12.5 Divide Floating-Point Numbers

A signal state of 1 at the Enable (EN) input activates the Divide
Floating-Point Numbers instruction. This instruction divides input IN1 by
IN2. The result can be scanned at O. If the result is outside the permissible
range for a floating-point number (overflow or underflow), the OV and the
OS bit of the status word are 1 and ENO is 0. You will find information on
evaluating the displays in the status word in Section 12.6.

Certain restrictions apply to the placement of floating-point math boxes (see
Section 6.1).

Table 12-4 Divide Real Box and Parameters

LAD Box Parameter Data Type Memory Area Description

DIV R
EN BOOL I, Q, M, D, L Enable input

DIV_R

EN ENO ENO BOOL I, Q, M, D, L Enable output

IN1 IN1 REAL I, Q, M, D, L DividendIN1

IN2 O IN2 REAL I, Q, M, D, L DivisorO
O REAL I, Q, M, D, L Result of division

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x x x x x x 1 x x

I 0.0 A signal state of 1 at input I 0.0 activates the
DIV_R box. The result of dividing MD0 by
MD4 is put into memory double word MD10.
If the result is outside the permissible range
for a real number or the signal state of input
I 0.0 is 0, output Q 4.0 is set.

Q 4.0DIV_R

IN2

EN ENO

MD4 MD10

IN1MD0

S

Function is executed (EN = 1):

NOT

O

Figure 12-4 Divide Real

Description

Floating-Point Math Instructions

12-7
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

12.6 Evaluating the Bits of the Status Word After Floating-Point
Instructions

The math instructions affect the following bits in the status word:

� CC 1 and CC 0

� OV

� OS

A hyphen (–) entered in a bit column of the table means that the bit in
question is not affected by the result of the integer math instruction.

Table 12-5 Signal State of Status Word Bits for Floating-Point Math Result
that is in Valid Range

Valid Range for a Floating-Point Result (32 Bits)
Bits of Status Word

Valid Range for a Floating-Point Result (32 Bits)
CC 1 CC 0 OV OS

+0, -0 (zero) 0 0 0 –

-3.402823E+38 � Result � -1.175494E-38
(negative number)

0 1 0 –

+1.175494E–38 � Result �� 3.402823E+38
(positive number)

1 0 0 –

Table 12-6 Signal State of Status Word Bits for Floating-Point Math Result
that is not in Valid Range

Range Not Valid for a Floating-Point Result Bits of Status Wordg g
(32 Bits) CC 1 CC 0 OV OS

-1.175494E-38 �� Result � -1.401298E-45
(negative number) Underflow

0 0 1 1

+1.401298E-45 �� Result � +1.175494E-38
(positive number) Underflow

0 0 1 1

Result �� -3.402823E+38
(negative number) Overflow

0 1 1 1

Result �� -3.402823E+38
(positive number) Overflow

1 0 1 1

Result < -3.402823E+38
or Result > +3.402823E+38

no floating-point number

1 1 1 1

Description

Floating-Point Math Instructions

12-8
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

12.7 Establishing the Absolute Value of a Floating-Point Number

With the Establishing the Absolute Value of a Floating-Point Number
instruction you can establish the absolute value of a floating-point number.

Table 12-7 Box ABS and Parameters

LAD Box Parameter Data Type Memory Area Description

ABS
EN BOOL I, Q, M, D, L Enable input

ABS

EN ENO
ENO BOOL I, Q, M, D, L Enable output

EN

IN OUT

ENO
IN REAL I, Q, M, D, L Input value: real

IN OUT
OUT REAL I, Q, M, D, L Output value: absolute value of the

real number

Status Word Bits

BR CC 1 CC 0 OV OS OR STA RLO /FC
Write X – – – – 0 X X 1

I 0.0
If I 0.0 = 1, the absolute value of MD8 is
output at MD12.

MD8 = +6.234 x 10–3 results in
MD12 = 6.234 x 10–3.

Output Q 4.0 is “1” if the conversion is not
executed (ENO = EN = 0).

Q 4.0ABS

OUT

EN ENO

MD12

Function is executed (EN = 1):

NOT

INMD8

Figure 12-5Establishing the Absolute Value of a Floating-Point Number

Description

Floating-Point Math Instructions

12-9
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

12.8 Establishing the Square and/or the Square Root of a Floating-Point
Number

With the Establishing the Square of a Floating-Point Number instruction, you
can square a floating-point number.

With the instruction Establishing the Square Root of a Floating-Point
Number, you can extract the square root of a floating-point number. This
instruction produces a positive result when the address is greater than “0”.
Sole exception: the square root of -0 is -0.

You can find information on the effects that the instructions SQR and SQRT
have on the status bits CC 1, CC 0, OV and OS in Section 12.6.

Table 12-8 shows the box SQR and describes the parameters. Table 12-9
shows the box SQRT and describes the parameters.

Table 12-8 Box SQR and Parameters

LAD Box Parameter Data
Type

Memory
Area

Description

EN BOOL I, Q, M, D, L Enable input

SQR

EN ENO
ENO BOOL I, Q, M, D, L Enable output

EN

IN OUT

ENO IN REAL I, Q, M, D, L Number
IN OUT

OUT REAL I, Q, M, D, L Square of the
number

Table 12-9 Box SQRT and Parameters

LAD Box Parameter Data
Type

Memory
Area

Description

SQ

EN BOOL I, Q, M, D, L Enable input

SQRT

EN ENO
ENO BOOL I, Q, M, D, L Enable output

EN

IN OUT

ENO
IN REAL I, Q, M, D, L Number

IN OUT
OUT REAL I, Q, M, D, L Square root of the

number

Description

Parameters

Floating-Point Math Instructions

12-10
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x x x x x 0 x x 1

Function is executed (EN = 1):

I 0.0 Q 4.0SQRT

OUT

EN ENO

MD10INMD0

SNOT

The box SQRT is activated when I 0.0 = 1.
The result of SQRT (MD0) is stored in the
memory double word MD10. If MD0 < 0 or if
the result is outside of the permissible area
for floating-point numbers or if the signal
state of I 0.0 = 0, output Q 4.0 is set.

Figure 12-6 Establishing the Square Root of a Floating-Point Number

Floating-Point Math Instructions

12-11
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

12.9 Establishing the Natural Logarithm of a Floating-Point Number

With the Establishing the Natural Logarithm of a Floating-Point Number
instruction you can determine the natural logarithm of a floating-point
number.

You can find information on the effects that the instruction LN has on the
status bits CC 1, CC 0, OV and OS in Section 12.6.

Table 12-10 Box LN and Parameters

LAD Box Parameter Data
Type

Memory
Area

Description

LN
EN BOOL I, Q, M, D, L Enable input

LN

EN ENO ENO BOOL I, Q, M, D, L Enable outputEN

IN OUT

ENO
IN REAL I, Q, M, D, L Number

OUT REAL I, Q, M, D, L Natural logarithm
of the number

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x x x x x 0 x x 1

Function is executed (EN = 1):

I 0.0 Q 4.0LN

OUT

EN ENO

MD10INMD0

SNOT

The box LN is activated when I 0.0 = 1. The
result of LN (MD0) is stored in the memory
double word MD10. If MD0 < 0 or if the result
is outside of the permissible area for
floating-point numbers or if the signal state of
I 0.0 = 0, output Q 4.0 is set.

Figure 12-7 Establishing the Natural Logarithm of a Floating-Point Number

Description

Floating-Point Math Instructions

12-12
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

12.10 Establishing the Exponential Value of a Floating-Point Number

With the Establishing the Exponential Value of a Floating-Point Number
instruction you can establish the exponential value of a floating-point number
to base e (= 2.71828...).

You can find information on the effects that the instruction EXP has on the
status bits CC 1, CC 0, OV and OS in Section 12.6.

Table 12-11 Box EXP and Parameters

LAD Box Parameter Data
Type

Memory
Area

Description

EXP
EN BOOL I, Q, M, D, L Enable input

EXP

EN ENO ENO BOOL I, Q, M, D, L Enable outputEN

IN OUT

ENO
IN REAL I, Q, M, D, L Number

OUT REAL I, Q, M, D, L Exponent of the
number

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x x x x x 0 x x 1

Function is executed (EN = 1):

I 0.0 Q 4.0EXP

OUT

EN ENO

MD10INMD0

SNOT

The box EXP is activated when I 0.0 = 1. The
result of EXP (MD0) is stored in the memory
double word MD10. If MD0 < 0 or if the result
is outside of the permissible area for
floating-point numbers or if the signal state of
I 0.0 = 0, output Q 4.0 is set.

Figure 12-8 Establishing the Exponential Value of a Floating-Point Number

Description

Floating-Point Math Instructions

12-13
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

12.11 Establishing the Trigonometrical Functions of Angles as
Floating-Point Numbers

With the following instructions, you can establish the trigonometrical
functions of angles represented as 32-bit IEEE floating-point numbers.

Instruction Explanation

SIN Establish the sine of an angle given in the radian measure.

ASIN Establish the arc sine of a floating-point number. The result is an angle
that is given in the radian measure. The value lies within the following
range:
��/ 2 � arc sine � + � / 2, where � = 3.14.

COS Establish the cosine of a floating-point number from an angle given in
the radian measure.

ACOS Establish the arc cosine of a floating-point number. The result is an
angle that is given in the radian measure. The value lies within the
following range:
0 � arc cosine� + �, where � = 3.14...

TAN Establish the tangent of a floating-point number from an angle given in
the radian measure.

ATAN Establish the arc tangent of a floating-point number. The result is an
angle that is given in the radian measure. The value lies within the
following range:
��/ 2 � arc tangent � + � / 2, where � = 3.14...

You can find information on the effects that the instructions SIN, ASIN,
COS, ACOS, TAN and ATAN have on the status bits CC 1, CC 0, OV and
OS in Section 12.6.

Tables 12-12 to 12-17 show the boxes SIN, ASIN, COS, ACOS, TAN and
ATAN and describe the parameters.

Table 12-12 Box SIN and Parameters

LAD Box Parameter Data
Type

Memory
Area

Description

SIN
EN BOOL I, Q, M, D, L Enable input

SIN

EN ENO ENO BOOL I, Q, M, D, L Enable outputEN

IN OUT

ENO
IN REAL I, Q, M, D, L Number

OUT REAL I, Q, M, D, L Sine of the
number

Description

Parameters

Floating-Point Math Instructions

12-14
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Table 12-13 Box ASIN and Parameters

LAD Box Parameter Data
Type

Memory
Area

Description

ASIN
EN BOOL I, Q, M, D, L Enable input

ASIN

EN ENO ENO BOOL I, Q, M, D, L Enable outputEN

IN OUT

ENO
IN REAL I, Q, M, D, L Number

OUT REAL I, Q, M, D, L Arc sine of the
number

Table 12-14 Box COS and Parameters

LAD Box Parameter Data
Type

Memory
Area

Description

COS
EN BOOL I, Q, M, D, L Enable input

COS

EN ENO ENO BOOL I, Q, M, D, L Enable outputEN

IN OUT

ENO
IN REAL I, Q, M, D, L Number

OUT REAL I, Q, M, D, L Cosine of the
number

Table 12-15 Box ACOS and Parameters

LAD Box Parameter Data
Type

Memory
Area

Description

ACOS
EN BOOL I, Q, M, D, L Enable input

ACOS

EN ENO ENO BOOL I, Q, M, D, L Enable outputEN

IN OUT

ENO
IN REAL I, Q, M, D, L Number

OUT REAL I, Q, M, D, L Arc cosine of the
number

Floating-Point Math Instructions

12-15
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Table 12-16 Box TAN and Parameters

LAD Box Parameter Data
Type

Memory
Area

Description

TAN
EN BOOL I, Q, M, D, L Enable input

TAN

EN ENO ENO BOOL I, Q, M, D, L Enable outputEN

IN OUT

ENO
IN REAL I, Q, M, D, L Number

OUT REAL I, Q, M, D, L Tangent of the
number

Table 12-17 Box ATAN and Parameters

LAD Box Parameter Data
Type

Memory
Area

Description

ATAN
EN BOOL I, Q, M, D, L Enable input

ATAN

EN ENO ENO BOOL I, Q, M, D, L Enable outputEN

IN OUT

ENO
IN REAL I, Q, M, D, L Number

OUT REAL I, Q, M, D, L Arc tangent of the
number

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x x x x x 0 x x 1

Function is executed (EN = 1):

I 0.0 Q 4.0SIN

OUT

EN ENO

MD10INMD0

SNOT

The box SIN is activated when I 0.0 = 1.
The result of SIN (MD0) is stored in the
memory double word MD10. If the result
is outside of the permissible area for
floating-point numbers or if the signal
state of I 0.0 = 0, output Q 4.0 is set.

Figure 12-9 Establishing the Sine of a Floating-Point Number

Floating-Point Math Instructions

12-16
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Floating-Point Math Instructions

13-1
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Comparison Instructions

Section Description Page

13.1 Compare Integer 13-2

13.2 Compare Double Integer 13-3

13.3 Compare Floating-Point Numbers 13-5

Chapter Overview

13

13-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

13.1 Compare Integer

The Compare Integer instruction carries out a compare operation on the basis
of 16-bit floating-point numbers. You can use this instruction like a normal
contact. This instruction compares inputs IN1 and IN2 according to the type
of comparison you select from the browser. Table 13-1 lists the valid
comparisons.

If the comparison is true, the result of logic operation (RLO) of the
comparison is 1. Otherwise, it is 0. There is no negation of the compare
output because this logic can also be handled by the inverse compare
function.

Table 13-1 Types of Comparisons for Integers

Type of Comparison Symbols in Name at Top of Box

IN1 is equal to IN2. ==

IN1 is not equal to IN2. <>

IN1 is greater than IN2. >

IN1 is less than IN2. <

IN1 is greater than or equal to IN2. >=

IN1 is less than or equal to IN2. <=

Table 13-2 Compare Integer Box and Parameters

LAD Box Parameter Data Type Memory Area Description

CMP
== I

IN1 INT I, Q, M, D, L First value to compare

== I

IN1
IN2 INT I Q M D L Second value to compare

IN2
IN2 INT I, Q, M, D, L Second value to compare

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – x x 0 – x 1 x 1

I 0.1 Output Q 4.0 is set if the following
conditions exist:
� There is a signal state of 1 at

inputs I 0.0 and I 0.1
� And MW0 = MW2
� And there is a signal state of 1 at

input I 0.2

Q 4.0CMP
== I

IN2MW2

IN1MW0

I 0.0 I 0.2

S

Comparison is true:

Figure 13-1 Compare Integer

Description

Comparison Instructions

13-3
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

13.2 Compare Double Integer

The Compare Double Integer instruction carries out a compare operation on
the basis of 32-bit floating-point numbers. You can use this instruction like a
normal contact. This instruction compares inputs IN1 and IN2 according to
the type of comparison you select from the browser. Table 13-3 lists the valid
comparisons.

If the comparison is true, the result of logic operation (RLO) of the function
is 1. Otherwise it is 0. There is no negation of the compare output, because
this logic can also be handled by the inverse compare function.

Table 13-3 Types of Comparisons for Double Integers

Type of Comparison Symbols in Name at Top of Box

IN1 is equal to IN2. ==

IN1 is not equal to IN2. <>

IN1 is greater than IN2. >

IN1 is less than IN2. <

IN1 is greater than or equal to IN2. >=

IN1 is less than or equal to IN2. <=

Table 13-4 Compare Double Integer Box and Parameters (Example: not equal)

LAD Box Parameter Data Type Memory Area Description

CMP
<> D

IN1 DINT I, Q, M, D, L First value to compare

IN1

<> D

IN2 DINT I Q M D L Second value to compare
IN2

IN2 DINT I, Q, M, D, L Second value to compare

Description

Comparison Instructions

13-4
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – x x 0 – x 1 x 1

I 0.1

Output Q 4.0 is set if the following
conditions exist:
� There is a signal state of 1 at

inputs I 0.0 and at I 0.1
� And MD0 = MD4
� And there is a signal state of 1 at

input I 0.2

Q 4.0CMP
== D

IN2MD4

IN1MD0

I 0.0 I 0.2

S

Comparison is true:

Figure 13-2 Compare Double Integer

Comparison Instructions

13-5
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

13.3 Compare Floating-Point Numbers

The Compare Floating-Point Numbers instruction triggers a comparison
operation. You can use this instruction like a normal contact. This instruction
compares inputs IN1 and IN2 according to the type of comparison you select
from the browser. Table 13-5 lists the valid comparisons.

If the comparison is true, the result of logic operation (RLO) of the function
is 1. Otherwise it is 0. There is no negation of the compare output, because
this logic can also be handled by the inverse compare function.

Table 13-5 Types of Comparisons for Floating-Point Numbers

Type of Comparison Symbols in Name at Top of Box

IN1 is equal to IN2. ==

IN1 is not equal to IN2. <>

IN1 is greater than IN2. >

IN1 is less than IN2. <

IN1 is greater than or equal to IN2. >=

IN1 is less than or equal to IN2. <=

Table 13-6 Compare Floating-Point Numbers: Box and Parameters (Example: less than)

LAD Box Parameter Data Type Memory Area Description

CMP
< R

IN1 REAL I, Q, M, D, L First value to compare

IN1

< R

IN2 REAL I Q M D L Second value to compare
IN2

IN2 REAL I, Q, M, D, L Second value to compare

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – x x x x x 1 x 1

I 0.1

Output Q 4.0 is set if the following
conditions exist:
� There is a signal state of 1 at

inputs I 0.0 and I 0.1
� And MD0 = MD4
� And there is a signal state of 1 at

input I 0.2

Q 4.0
CMP
== R

IN2MD4

IN1MD0

I 0.0 I 0.2

S

Comparison is true:

Figure 13-3 Compare Floating-Point Numbers

Description

Comparison Instructions

13-6
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Comparison Instructions

14-1
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Move and Conversion Instructions

Section Description Page

14.1 Assign a Value 14-2

14.2 BCD to Integer 14-4

14.3 Integer to BCD 14-5

14.4 Integer to Double Integer 14-6

14.5 BCD to Double Integer 14-7

14.6 Double Integer to BCD 14-8

14.7 Double Integer to Floating-Point Number 14-9

14.8 Ones Complement Integer 14-10

14.9 Ones Complement Double Integer 14-11

14.10 Twos Complement Integer 14-12

14.11 Twos Complement Double Integer 14-13

14.12 Negate Floating-Point Number 14-14

14.13 Round to Double Integer 14-15

14.14 Truncate Double Integer Part 14-16

14.15 Ceiling 14-17

14.16 Floor 14-18

Chapter Overview

14

14-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

14.1 Assign a Value

The Assign a Value instruction enables you to pre-assign a variable with a
specific value.

The value specified at the IN input is copied to the address specified at the
OUT output. ENO has the same signal state as EN.

With the MOVE box, the Assign a Value instruction can copy all data types
that are 8, 16, or 32 bits in length. User-defined data types such as arrays or
structures have to be copied with the Direct Word Move integrated system
function (see the Programming Manual /234/).

The Assign a Value instruction is affected by the Master Control Relay
(MCR). For more information on how the MCR functions, see Section 20.5.

Certain restrictions apply to the placement of the Assign a Value box (see
Section 6.1).

Table 14-1 Assign a Value Box and Parameters

LAD Box Parameter Data Type Memory Area Description

EN BOOL I, Q, M, D, L Enable input

MOVE
ENO BOOL I, Q, M, D, L Enable output

MOVE

EN ENO
IN

All data types that
are 8, 16, and 32
bits in length

I, Q, M, D, L Source value

IN OUT
OUT

All data types that
are 8, 16, and 32
bits in length

I, Q, M, D, L Destination address

I 0.0
The instruction is executed if the signal
state of input I 0.0 is 1. The content of
memory word MW10 is copied to data
word 12 of the open DB.

Output Q 4.0 is 1 if the operation is
executed.

Q 4.0MOVE

IN OUT

EN ENO

MW10 DBW12

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write 1 – – – – – 1 1 x

Function is executed (EN = 1):

Figure 14-1 Assign a Value

Description

Move and Conversion Instructions

14-3
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

For information on integrated system functions that act as move instructions
which can pre-assign a specific value to a variable or which can copy
variables of varying types, see the Programming Manual /234/.

Pre-Assigning a
Specific Value to a
Variable

Move and Conversion Instructions

14-4
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

14.2 BCD to Integer

The BCD to Integer conversion instruction reads the contents specified in the
input parameter IN as a three-digit number in binary coded decimal format
(BCD, � 999) and converts this number to an integer value. The output
parameter OUT provides the result.

ENO and EN always have the same signal state.

If a place of a BCD number is in the invalid range of 10 to 15, a BCDF error
occurs during an attempted conversion.

� The CPU goes into the STOP mode. “BCD Conversion Error” is entered
in the diagnostic buffer with event ID number 2521.

� If OB121 is programmed, it is called. For more information on
programming OB121, see the Programming Manual /234/.

Certain restrictions apply to the placement of the BCD to Integer conversion
box (see Section 6.1).

Table 14-2 BCD to Integer Conversion Box and Parameters

LAD Box Parameter Data Type Memory Area Description

BCD I
EN BOOL I, Q, M, D, L Enable input

BCD_I

EN ENO
ENO BOOL I, Q, M, D, L Enable output

EN

IN OUT

ENO
IN WORD I, Q, M, D, L Number in BCD format

OUT INT I, Q, M, D, L Integer value of BCD number

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write 1 – – – – 0 1 1 x

I 0.0
If the signal state of input I 0.0 is 1, the
conversion is executed. The contents of
memory word MW10 is read as a
three-digit number in BCD format and
converted to an integer. The result is
stored in memory word MW12. If the
conversion is not executed, the signal
state of output Q 4.0 is 1 (ENO = EN).

Q 4.0BCD_I

EN ENO

MW12INMW10

NOT

Function is executed (EN = 1):

OUT

Figure 14-2 BCD to Integer

Description

Move and Conversion Instructions

14-5
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

14.3 Integer to BCD

The Integer to BCD conversion instruction reads the contents specified in the
input parameter IN as an integer value and converts this value to a three-digit
number in binary coded decimal format (BCD, � 999). The output
parameter OUT provides the result. If an overflow occurs, ENO is 0.

Certain restrictions apply to the placement of the Integer to BCD conversion
box (see Section 6.1).

Table 14-3 Integer to BCD Conversion Box and Parameters

LAD Box Parameter Data Type Memory Area Description

I BCD
EN BOOL I, Q, M, D, L Enable input

I_BCD

EN ENO ENO BOOL I, Q, M, D, L Enable output

IN OUT IN INT I, Q, M, D, L Integer number

OUT WORD I, Q, M, D, L Result in BCD format

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write 1 – – x x 0 1 x x

I 0.0 If the signal state of input I 0.0 is 1, the
conversion is executed. The contents of
memory word MW10 is read as an
integer and converted to a three-digit
number in BCD format. The result is
stored in memory word MW12. If an
overflow occurred, the signal state of
output Q 4.0 is 1. If the signal state at
input EN is 0 (that is, if the conversion is
not executed), the signal state of output
Q 4.0 is also 1.

Q 4.0I_BCD

IN

EN ENO

MW10 MW12

Function is executed (EN = 1):

NOT

OUT

Figure 14-3 Integer to BCD

Description

Move and Conversion Instructions

14-6
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

14.4 Integer to Double Integer

The Integer to Double Integer conversion instruction reads the contents
specified in the input parameter IN as an integer and converts the integer to a
double integer. The output parameter OUT provides the result. ENO and EN
always have the same signal state.

Certain restrictions apply to the placement of the Integer to Double Integer
conversion box (see Section 6.1).

Table 14-4 Integer to Double Integer Conversion Box and Parameters

LAD Box Parameter Data Type Memory Area Description

I DI
EN BOOL I, Q, M, D, L Enable input

I_DI

EN ENO ENO BOOL I, Q, M, D, L Enable output

IN OUT IN INT I, Q, M, D, L Value to convert

OUT DINT I, Q, M, D, L Result

Status Word Bits

I 0.0 If the signal state of input I 0.0 is 1, the
conversion is executed. The contents of
memory word MW10 is read as an integer
and converted to a double integer. The result
is stored in memory double word MD12. If
the conversion is not executed, the signal
state of output Q 4.0 is 1 (ENO = EN).

Q 4.0I_DI

EN ENO

MD12INMW10

NOT

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write 1 – – – – 0 1 1 x

Function is executed (EN = 1):

OUT

Figure 14-4 Integer To Double Integer

Description

Move and Conversion Instructions

14-7
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

14.5 BCD to Double Integer

The BCD to Double Integer conversion instruction reads the contents
specified in the input parameter IN as a seven-digit number in binary coded
decimal format (BCD, � 9,999,999) and converts this number to a double
integer value. The output parameter OUT provides the result.

ENO and EN always have the same signal state.

If a place of a BCD number is in the invalid range of 10 to 15, a BCDF error
occurs during an attempted conversion.

� The CPU goes into the STOP mode. “BCD Conversion Error” is entered
in the diagnostic buffer with event ID number 2521.

� If OB121 is programmed, it is called. For more information on
programming OB121, see the Programming Manual /234/.

Certain restrictions apply to the placement of the BCD to Double Integer
conversion box (see Section 6.1).

Table 14-5 BCD to Double Integer Conversion Box and Parameters

LAD Box Parameter Data Type Memory Area Description

BCD DI
EN BOOL I, Q, M, D, L Enable input

BCD_DI

EN ENO ENO BOOL I, Q, M, D, L Enable output

IN OUT IN DWORD I, Q, M, D, L Number in BCD format

OUT DINT I, Q, M, D, L Double integer value of BCD number

Status Word Bits

I 0.0
If the signal state of input I 0.0 is 1, the
conversion is executed. The contents of
memory double word MD8 is read as a
seven-digit number in BCD format and
converted to a double integer. The result is
stored in memory double word MD12. If the
conversion is not executed, the signal state
of output Q 4.0 is 1 (ENO = EN).

Q 4.0BCD_DI

EN ENO

MD12INMD8

NOT

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write 1 – – – – 0 1 1 x

Function is executed (EN = 1):

OUT

Figure 14-5 BCD to Double Integer

Description

Move and Conversion Instructions

14-8
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

14.6 Double Integer to BCD

The Double Integer to BCD conversion instruction reads the contents
specified in the input parameter IN as a double integer value and converts
this value to a seven-digit number in BCD format (� 9,999,999). The output
parameter OUT provides the result. If an overflow occurs, ENO is 0.

Certain restrictions apply to the placement of the Double Integer to BCD
conversion box (see Section 6.1).

Table 14-6 Double Integer to BCD Conversion Box and Parameters

LAD Box Parameter Data Type Memory Area Description

DI BCD
EN BOOL I, Q, M, D, L Enable input

DI_BCD

EN ENO ENO BOOL I, Q, M, D, L Enable output

IN OUT IN DINT I, Q, M, D, L Double integer number

OUT DWORD I, Q, M, D, L Result in BCD format

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x – – x x x 1 x x

I 0.0
If the signal state of input I 0.0 is 1, the
conversion is executed. The contents of
memory double word MD8 is read as a
double integer and converted to a
seven-digit number in BCD format. The
result is stored in memory double word
MD12. If an overflow occurred, the signal
state of output Q 4.0 is 1. If the signal state
at input EN is 0 (that is, if the conversion is
not executed), the signal state of output
Q 4.0 is also 1.

Q 4.0DI_BCD

IN

EN ENO

MD8 MD12

Function is executed (EN = 1):

NOT

OUT

Figure 14-6 Double Integer to BCD

Description

Move and Conversion Instructions

14-9
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

14.7 Double Integer to Floating-Point Number

The Double Integer to Floating-Point Number conversion instruction reads
the contents specified in the input parameter IN as a double integer value and
converts this value to a real number. The output parameter OUT provides the
result. ENO and EN always have the same signal state.

Certain restrictions apply to the placement of the Double Integer to Real
conversion box (see Section 6.1).

Table 14-7 Double Integer to Floating-Point Number Conversion Box and Parameters

LAD Box Parameter Data Type Memory Area Description

DI R
EN BOOL I, Q, M, D, L Enable input

DI_R

EN ENO ENO BOOL I, Q, M, D, L Enable outputEN

IN

ENO

OUT IN DINT I, Q, M, D, L Value to convert

OUT REAL I, Q, M, D, L Result

Status Word Bits

I 0.0

If the signal state of input I 0.0 is 1, the
conversion is executed. The contents of
memory double word MD8 is read as an
integer and converted to a real number.
The result is stored in memory double
word MD12. If the conversion is not
executed, the signal state of output Q 4.0
is 1 (ENO=EN).

Q 4.0DI_R

IN

EN ENO

MD8 MD12

NOT

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write 1 – – – – 0 1 1 x

Function is executed (EN = 1):

OUT

Figure 14-7 Double Integer to Floating-Point Number

Description

Move and Conversion Instructions

14-10
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

14.8 Ones Complement Integer

The Ones Complement Integer instruction reads the contents specified in the
input parameter IN and performs the Boolean word logic instruction
Exclusive Or Word (see Section 15.6) masked by FFFFH, so that every bit is
changed to its opposite value. The output parameter OUT provides the result.
ENO and EN always have the same signal state.

Certain restrictions apply to the placement of the Ones Complement Integer
conversion box (see Section 6.1).

Table 14-8 Ones Complement Integer Box and Parameters

LAD Box Parameter Data Type Memory Area Description

INV I
EN BOOL I, Q, M, D, L Enable input

INV_I

EN ENO ENO BOOL I, Q, M, D, L Enable output

IN OUT IN INT I, Q, M, D, L Input value

OUT INT I, Q, M, D, L Ones complement integer

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x – – – – x 1 x x

I 0.0
If the signal state of input I 0.0 is 1, the
conversion is executed. Every bit in MW8
is reversed.

MW8 = 00000000 00000000 →
MW10 = 11111111 11111111
If the conversion is not executed, the signal
state of output Q 4.0 is 1 (ENO = EN).

Q 4.0INV_I

EN ENO

MW10INMW8

NOT

OUT

Function is executed (EN = 1):

Figure 14-8 Ones Complement Integer

Description

Move and Conversion Instructions

14-11
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

14.9 Ones Complement Double Integer

The Ones Complement Double Integer instruction reads the contents
specified in the input parameter IN and performs the Boolean word logic
operation Exclusive Or Word (see Section 15.6) masked by FFFF FFFFH, so
that every bit is changed to the opposite value. The output parameter OUT
provides the result. ENO and EN always have the same signal state.

Certain restrictions apply to the placement of the Ones Complement Double
Integer conversion box (see Section 6.1).

Table 14-9 Ones Complement Double Integer Box and Parameters

LAD Box Parameter Data Type Memory Area Description

INV DI
EN BOOL I, Q, M, D, L Enable input

INV_DI

EN ENO ENO BOOL I, Q, M, D, L Enable output

IN OUT IN DINT I, Q, M, D, L Input value

OUT DINT I, Q, M, D, L Ones complement double integer

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x – – – – x 1 x x

I 0.0
If the signal state of input I 0.0 is 1, the
conversion is executed. Each bit of memory
double word MD8 is changed:

MD8 =FFFF FFFF → MD12 = 0000 0000

If the conversion is not executed, the signal
state of output Q 4.0 is 1 (ENO = EN).

Q 4.0INV_DI

EN ENO

MD10INMD8

NOT

OUT

Function is executed (EN = 1):

Figure 14-9 Ones Complement Double Integer

Description

Move and Conversion Instructions

14-12
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

14.10 Twos Complement Integer

 The Twos Complement Integer instruction reads the contents specified in the
input parameter IN and changes the sign (for example, from a positive value
to a negative value). The output parameter OUT provides the result. If the
signal state of EN is 0, then the signal state of ENO is 0. If the signal state of
EN is 1 and an overflow occurs, the signal state of ENO is 0.

Certain restrictions apply to the placement of the Twos Complement Integer
conversion box (see Section 6.1).

Table 14-10 Twos Complement Integer Box and Parameters

LAD Box Parameter Data Type Memory Area Description

NEG I
EN BOOL I, Q, M, D, L Enable input

NEG_I

EN ENO ENO BOOL I, Q, M, D, L Enable output

IN OUT IN INT I, Q, M, D, L Input value

OUT INT I, Q, M, D, L Twos complement integer

Status Word Bits

I 0.0 If the signal state of input I 0.0 is 1, the conversion
is executed. The value of memory word MW8 is
provided at OUT in memory word MW10 with the
opposite sign, as shown in the following example:

MW8 = +10 → MW10 = – 10

If the signal state of EN is 1 and an overflow
occurs, the signal state of ENO is 0 and the signal
state of output Q 4.0 is 1. If the conversion is not
executed, the signal state of output Q 4.0 is 1
(ENO = EN).

Q 4.0NEG_I

EN ENO

MW10INMW8

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x x x x x x 1 x x

Function is executed (EN = 1):

NOT

OUT

Figure 14-10 Twos Complement Integer

Description

Move and Conversion Instructions

14-13
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

14.11 Twos Complement Double Integer

The Twos Complement Double Integer instruction reads the contents
specified in the input parameter IN and changes the sign (for example, from a
positive value to a negative value). The output parameter OUT provides the
result. If the signal state of EN is 0, then the signal state of ENO is 0. If the
signal state of EN is 1 and an overflow occurs, the signal state of ENO is 0.

Certain restrictions apply to the placement of the Twos Complement Double
Integer conversion box (see Section 6.1).

Table 14-11 Twos Complement Double Integer Box and Parameters

LAD Box Parameter Data Type Memory Area Description

NEG DI
EN BOOL I, Q, M, D, L Enable input

NEG_DI

EN ENO ENO BOOL I, Q, M, D, L Enable output

IN OUT IN DINT I, Q, M, D, L Input value

OUT DINT I, Q, M, D, L Twos complement double integer

Status Word Bits

I 0.0 If the signal state of input I 0.0 is 1, the conversion
is executed. The value of memory double word
MD8 is provided at OUT in memory double word
MD10 with the opposite sign, as shown in the
following example:

MD8 = +60.000 → MD10 = – 60.000.

If the signal state of EN is 1 and an overflow
occurs, the signal state of ENO is 0 and the signal
state of output Q 4.0 is 1. If the conversion is not
executed, the signal state of output Q 4.0 is 1
(ENO = EN).

Q 4.0NEG_DI

EN ENO

MD12INMD8

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x x x x x x 1 x x

Function is executed (EN = 1):

NOT

OUT

Figure 14-11 Twos Complement Double Integer

Description

Move and Conversion Instructions

14-14
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

14.12 Negate Floating-Point Number

The Negate Floating-Point Number instruction reads the contents specified in
the input parameter IN and inverts the sign bit, that is, the instruction
changes the sign of the number (for example from 0 for plus to 1 for minus).
The bits of the exponent and mantissa remain the same. The output
parameter OUT provides the result. ENO and EN always have the same
signal state.

Certain restrictions apply to the placement of the Negate Floating-Point
Number conversion box (see Section 6.1).

Table 14-12 Negate Floating-Point Number Box and Parameters

LAD Box Parameter Data Type Memory Area Description

NEG R
EN BOOL I, Q, M, D, L Enable input

NEG_R

EN ENO ENO BOOL I, Q, M, D, L Enable output

IN OUT IN REAL I, Q, M, D, L Input value

OUT REAL I, Q, M, D, L The result is the negated form of the
input value.

Status Word Bits

I 0.0 If the signal state of input I 0.0 is 1, the conversion
is executed. The value of memory double word
MD8 is provided at OUT in memory double word
MD12 with the opposite sign, as shown in the
following example:

MD8 = +6.234 x 10 –3 → MD12 = –6.234 x 10 –3

If the conversion is not executed, the signal state
of output Q 4.0 is 1 (ENO = EN).

Q 4.0NEG_R

IN

EN ENO

MD8 MD12

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x – – – – 0 x x 1

NOT

OUT

Function is executed (EN = 1):

Figure 14-12 Negate Floating-Point Number

Move and Conversion Instructions

14-15
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

14.13 Round to Double Integer

The Round to Double Integer conversion instruction reads the contents
specified in the input parameter IN as a real number and converts this
number to a double integer, by rounding it to the nearest whole number. The
result is the nearest integer component (that is, the nearest whole number).
The output parameter OUT provides the result. If an overflow occurs, ENO
is 0.

Certain restrictions apply to the placement of the Round to Double Integer
conversion box (see Section 6.1).

Table 14-13 Round to Double Integer Box and Parameters

LAD Box Parameter Data Type Memory Area Description

ROUND
EN BOOL I, Q, M, D, L Enable input

ROUND

EN ENO ENO BOOL I, Q, M, D, L Enable output

IN OUT IN REAL I, Q, M, D, L Value to round

OUT DINT I, Q, M, D, L IN rounded to nearest whole number

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x – – x x x 1 x x

I 0.0
If the signal state of input I 0.0 is 1, the
conversion is executed. The contents of
memory double word MD8 is read as a real
number and converted to a double integer.
The result of this round-to-nearest function is
stored in memory double word MD12. If an
overflow occurred, the signal state of output
Q 4.0 is 1. If the signal state at input EN is 0
(that is, if the conversion is not executed), the
signal state of output Q 4.0 is also 1.

Q 4.0ROUND

IN

EN ENO

MD8 MD12

Function is executed (EN = 1):

NOT

OUT

Figure 14-13 Round to Double Integer

Description

Move and Conversion Instructions

14-16
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

14.14 Truncate Double Integer Part

The Truncate Double Integer Part conversion instruction reads the contents
specified in the input parameter IN as a real number and converts this
number to a double integer, by rounding it to the nearest lower or equal
whole number. The result is the integer component of the specified real
number (that is, the whole number part of the real number). The output
parameter OUT provides the result. If an overflow occurs, ENO is 0.

Certain restrictions apply to the placement of the Truncate Double Integer
Part conversion box (see Section 6.1).

Table 14-14 Truncate Double Integer Part Box and Parameters

LAD Box Parameter Data Type Memory Area Description

TRUNC
EN BOOL I, Q, M, D, L Enable input

TRUNC

EN ENO ENO BOOL I, Q, M, D, L Enable output

IN OUT IN REAL I, Q, M, D, L Value to roundIN OUT
OUT DINT I, Q, M, D, L Whole number part of IN value

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x – – x x x 1 x x

I 0.0
If the signal state of input I 0.0 is 1, the
conversion is executed. The contents of
memory double word MD8 is read as a real
number and converted to a double integer.
The integer component is the result and is
stored in memory double word MD12. If an
overflow occurred, the signal state of output
Q 4.0 is 1. If the signal state at input EN is 0
(that is, if the conversion is not executed),
the signal state of output Q 4.0 is also 1.

Q 4.0TRUNC

IN

EN ENO

MD8 MD12

Function is executed (EN = 1):

NOT

OUT

Figure 14-14 Truncate Double Integer Part

Description

Move and Conversion Instructions

14-17
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

14.15 Ceiling

The Ceiling conversion instruction reads the contents specified in the input
parameter IN as a real number and converts this number to a double integer.
The result is the lowest integer component which is greater than or equal to
the specified real number. The output parameter OUT provides the result. If
an overflow occurs, ENO is 0.

Certain restrictions apply to the placement of the Ceiling conversion box (see
Section 6.1).

Table 14-15 Ceiling Conversion Box and Parameters

LAD Box Parameter Data Type Memory Area Description

CEIL
EN BOOL I, Q, M, D, L Enable input

CEIL

EN ENO ENO BOOL I, Q, M, D, L Enable output

IN OUT IN REAL I, Q, M, D, L Value to convert

OUT DINT I, Q, M, D, L Result

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x – – x x x 1 x x

I 0.0
If the signal state of input I 0.0 is 1, the
conversion is executed. The contents of
memory double word MD8 is read as a real
number and converted to a double integer by
rounding to the next higher (or equal) whole
number. The result is stored in memory
double word MD12. If an overflow occurred,
the signal state of output Q 4.0 is 1. If the
signal state at input EN is 0 (that is, if the
conversion is not executed), the signal state
of output Q 4.0 is also 1.

Q 4.0CEIL

IN

EN ENO

MD8 MD12

Function is executed (EN = 1):

NOT

OUT

Figure 14-15 Ceiling

Description

Move and Conversion Instructions

14-18
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

14.16 Floor

The Floor conversion instruction reads the contents specified in the input
parameter IN as a real number and converts this number to a double integer.
The result is the highest integer component which is lower than or equal to
the specified real number. The output parameter OUT provides the result. If
an overflow occurs, ENO is 0.

Certain restrictions apply to the placement of the Floor conversion box (see
Section 6.1).

Table 14-16 Floor Conversion Box and Parameters

LAD Box Parameter Data Type Memory Area Description

FLOOR
EN BOOL I, Q, M, D, L Enable input

FLOOR

EN ENO ENO BOOL I, Q, M, D, L Enable output

IN OUT IN REAL I, Q, M, D, L Value to convert

OUT DINT I, Q, M, D, L Result

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x – – x x x 1 x x

I 0.0 If the signal state of input I 0.0 is 1, the
conversion is executed. The contents of
memory double word MD8 is read as a real
number and converted to a double integer by
rounding to the next lower (or equal) whole
number. The result is stored in memory
double word MD12. If an overflow occurred,
the signal state of output Q 4.0 is 1. If the
signal state at input EN is 0 (that is, if the
conversion is not executed), the signal state
of output Q 4.0 is also 1.

Q 4.0FLOOR

IN

EN ENO

MD8 MD12

Function is executed (EN = 1):

NOT

OUT

Figure 14-16 Floor

Description

Move and Conversion Instructions

15-1
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Word Logic Instructions

Section Description Page

15.1 Overview 15-2

15.2 WAnd Word 15-3

15.3 WAnd Double Word 15-4

15.4 WOr Word 15-5

15.5 WOr Double Word 15-6

15.6 WXOr Word 15-7

15.7 WXOr Double Word 15-8

Chapter Overview

15

15-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

15.1 Overview

Word logic instructions compare pairs of words (16 bits) and double words
(32 bits) bit by bit, according to Boolean logic. The following instructions
are available for performing word logic operations:

� (Word) And Word: Combines two words bit by bit, according to the And
truth table.

� (Word) And Double Word: Combines two double words bit by bit,
according to the And truth table.

� (Word) Or Word: Combines two words bit by bit, according to the Or
truth table.

� (Word) Or Double Word: Combines two double words bit by bit,
according to the Or truth table.

� (Word) Exclusive Or Word: Combines two words bit by bit, according to
the Exclusive Or truth table.

� (Word) Exclusive Or Double Word: Combines two double words bit by
bit, according to the Exclusive Or truth table.

What Are
Word Logic
Instructions?

Word Logic Instructions

15-3
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

15.2 WAnd Word

A 1 at the Enable (EN) input activates the (Word) And Word instruction. This
instruction combines the two digital values indicated in inputs IN1 and IN2
bit by bit, according to the And truth table. The values are interpreted as pure
bit patterns. The result can be scanned at the output OUT. ENO has the same
signal state as EN.

The relationship of the result at output OUT to 0 affects condition code bit
CC 1 of the status word as follows:

� If the result at output OUT is not equal to 0, condition code bit CC 1 of
the status word is set to 1.

� If the result at output OUT is equal to 0, condition code bit CC 1 of the
status word is 0.

Certain restrictions apply to the placement of word logic boxes (see
Section 6.1).

Table 15-1 (Word) And Word Box and Parameters

LAD Box Parameter Data Type Memory Area Description

WAND W
EN BOOL I, Q, M, D, L Enable input

WAND_W
EN ENO

ENO BOOL I, Q, M, D, L Enable output

IN1

EN ENO
IN1 WORD I, Q, M, D, L First value for logic operation

IN1

IN2 OUT
IN2 WORD I, Q, M, D, L Second value for logic operation

IN2 OUT
OUT WORD I, Q, M, D, L Result of logic operation

Status Word Bits

BR CC 1 CC 0 OV OS OR STA RLO FC
Write 1 x 0 0 – x 1 1 1

I 0.0 A signal state of 1 at input I 0.0
activates the instruction. Only bits 0 to
3 are important; the rest of memory
word MW0 is masked:

IN1 = 0101010101010101
IN2 = 0000000000001111
OUT = 0000000000000101

The signal state of output Q 4.0 is 1 if
the operation is executed.

Q 4.0WAND_W

IN2 OUT

EN ENO

2#0000000000001111 MW2

IN1MW0

Function is executed (EN = 1):

Figure 15-1 (Word) And Word

Description

Word Logic Instructions

15-4
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

15.3 WAnd Double Word

A 1 at the Enable (EN) input activates the (Word) And Double Word
instruction. This instruction combines the two digital values indicated in
inputs IN1 and IN2 bit by bit, according to the And truth table. The values
are interpreted as pure bit patterns. The result can be scanned at the output
OUT. ENO has the same signal state as EN.

The relationship of the result at output OUT to 0 affects condition code bit
CC 1 of the status word as follows:

� If the result at output OUT is not equal to 0, condition code bit CC 1 of
the status word is set to 1.

� If the result at output OUT is equal to 0, condition code bit CC 1 of the
status word is 0.

Certain restrictions apply to the placement of word logic boxes (see
Section 6.1).

Table 15-2 (Word) And Double Word Box and Parameters

LAD Box Parameter Data Type Memory Area Description

WAND DW
EN BOOL I, Q, M, D, L Enable input

WAND_DW

EN ENO
ENO BOOL I, Q, M, D, L Enable output

IN1

EN ENO
IN1 DWORD I, Q, M, D, L First value for logic operation

IN1

IN2 OUT
IN2 DWORD I, Q, M, D, L Second value for logic operation

IN2 OUT
OUT DWORD I, Q, M, D, L Result of logic operation

Status Word Bits

BR CC 1 CC 0 OV OS OR STA RLO FC
Write 1 x 0 0 – x 1 1 1

I 0.0 A signal state of 1 at input I 0.0 activates the instruction.
Only bits 4 to 11 are important; the rest of memory double
word MD4 is masked:

IN1 = 0101010101010101 0101010101010101
IN2 = 0000000000000000 0000111111111111
OUT = 0000000000000000 0000010101010000

The signal state of output Q 4.0 is 1 if the operation is
executed.

Q 4.0WAND_DW

IN2
OUT

EN ENO

DW#16#FF0
MD4

IN1MD0

Function is executed (EN = 1):

Figure 15-2 (Word) And Double Word

Description

Word Logic Instructions

15-5
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

15.4 WOr Word

A 1 at the Enable (EN) input activates the (Word) Or Word instruction. This
instruction combines the two digital values indicated in inputs IN1 and IN2
bit by bit, according to the Or truth table. The values are interpreted as pure
bit patterns. The result can be scanned at the output OUT. ENO has the same
signal state as EN.

The relationship of the result at output OUT to 0 affects condition code bit
CC 1 of the status word as follows:

� If the result at output OUT is not equal to 0, condition code bit CC 1 of
the status word is set to 1.

� If the result at output OUT is equal to 0, condition code bit CC 1 of the
status word is 0.

Certain restrictions apply to the placement of word logic boxes (see
Section 6.1).

Table 15-3 (Word) Or Word Box and Parameters

LAD Box Parameter Data Type Memory Area Description

WOR W
EN BOOL I, Q, M, D, L Enable input

WOR_W
EN ENO

ENO BOOL I, Q, M, D, L Enable output

IN1

EN ENO
IN1 WORD I, Q, M, D, L First value for logic operation

IN1

IN2 OUT
IN2 WORD I, Q, M, D, L Second value for logic operation

IN2 OUT
OUT WORD I, Q, M, D, L Result of logic operation

Status Word Bits

BR CC 1 CC 0 OV OS OR STA RLO FC
Write 1 x 0 0 – x 1 1 1

I 0.0
A signal state of 1 at input I 0.0
activates the instruction. Bits 0 to 3 are
set to 1; the rest of memory word MW0
remains unchanged:

IN1 = 0101010101010101
IN2 = 0000000000001111
OUT = 0101010101011111

The signal state of output Q 4.0 is 1 if
the operation is executed.

Q 4.0WOR_W

IN2 OUT

EN ENO

2#0000000000001111 MW2

IN1MW0

Function is executed (EN = 1):

Figure 15-3 (Word) Or Word

Description

Word Logic Instructions

15-6
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

15.5 WOr Double Word

A 1 at the Enable (EN) input activates the (Word) Or Double Word
instruction. This instruction combines the two digital values indicated in
inputs IN1 and IN2 bit by bit, according to the Or truth table. The values are
interpreted as pure bit patterns. The result can be scanned at the output OUT.
ENO has the same signal state as EN.

The relationship of the result at output OUT to 0 affects condition code bit
CC 1 of the status word as follows:

� If the result at output OUT is not equal to 0, condition code bit CC 1 of
the status word is set to 1.

� If the result at output OUT is equal to 0, condition code bit CC 1 of the
status word is 0.

Certain restrictions apply to the placement of word logic boxes (see
Section 6.1).

Table 15-4 (Word) Or Double Word Box and Parameters

LAD Box Parameter Data Type Memory Area Description

WOR DW
EN BOOL I, Q, M, D, L Enable input

WOR_DW

EN ENO
ENO BOOL I, Q, M, D, L Enable output

IN1

EN ENO
IN1 DWORD I, Q, M, D, L First value for logic operation

IN1

IN2 OUT
IN2 DWORD I, Q, M, D, L Second value for logic operation

IN2 OUT
OUT DWORD I, Q, M, D, L Result of logic operation

Status Word Bits

BR CC 1 CC 0 OV OS OR STA RLO FC
Read * – – – – * – * *
Write 1 x 0 0 – x 1 1 1

I 0.0 A signal state of 1 at input I 0.0 activates the instruction.
Bits 0 to 11 are set to 1; the rest of memory double word
MD4 remains unchanged:

IN1 = 0101010101010101 0101010101010101
IN2 = 0000000000000000 0000111111111111
OUT = 0101010101010101 0101111111111111

The signal state of output Q 4.0 is 1 if the operation is
executed.

Q 4.0WOR_DW

IN2
OUT

EN ENO

DW#16#FFF
MD4

IN1MD0

Function is executed (EN = 1):

Figure 15-4 (Word) Or Double Word

Description

Word Logic Instructions

15-7
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

15.6 WXOr Word

A 1 at the Enable (EN) input activates the (Word) Exclusive Or Word
instruction. This instruction combines the two digital values indicated in
inputs IN1 and IN2 bit by bit, according to the XOr truth table. The values
are interpreted as pure bit patterns. The result can be scanned at the output
OUT. ENO has the same signal state as EN.

The relationship of the result at output OUT to 0 affects condition code bit
CC 1 of the status word as follows:

� If the result at output OUT is not equal to 0, condition code bit CC 1 of
the status word is set to 1.

� If the result at output OUT is equal to 0, condition code bit CC 1 of the
status word is 0.

Certain restrictions apply to the placement of word logic boxes (see
Section 6.1).

Table 15-5 (Word) Exclusive Or Word Box and Parameters

LAD Box Parameter Data Type Memory Area Description

WXOR W
EN BOOL I, Q, M, D, L Enable input

WXOR_W
EN ENO

ENO BOOL I, Q, M, D, L Enable output

IN1

EN ENO
IN1 WORD I, Q, M, D, L First value for logic operation

IN1

IN2 OUT
IN2 WORD I, Q, M, D, L Second value for logic operation

IN2 OUT
O WORD I, Q, M, D, L Result of logic operation

Status Word Bits

BR CC 1 CC 0 OV OS OR STA RLO FC
Write 1 x 0 0 – x 1 1 1

I 0.0 Q 4.0WXOR_W

IN2 OUT

EN ENO

2#0000000000001111 MW2

IN1MW0

Function is executed (EN = 1):

A signal state of 1 at input I 0.0
activates the instruction.

IN1 = 0101010101010101
IN2 = 0000000000001111
OUT = 0101010101011010

The signal state of output Q 4.0 is 1
if the operation is executed.

Figure 15-5 (Word) XOr Word

Description

Word Logic Instructions

15-8
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

15.7 WXOr Double Word

A 1 at the Enable (EN) input activates the (Word) Exclusive Or Double Word
instruction. This instruction combines the two digital values indicated in
inputs IN1 and IN2 bit by bit, according to the XOr truth table. The values
are interpreted as pure bit patterns. The result can be scanned at the output
OUT. ENO has the same signal state as EN.

The relationship of the result at output OUT to 0 affects condition code bit
CC 1 of the status word as follows:

� If the result at output OUT is not equal to 0, condition code bit CC 1 of
the status word is set to 1.

� If the result at output OUT is equal to 0, condition code bit CC 1 of the
status word is 0.

Certain restrictions apply to the placement of word logic boxes (see
Section 6.1).

Table 15-6 (Word) Exclusive Or Double Word Box and Parameters

LAD Box Parameter Data Type Memory Area Description

WXOR DW
EN BOOL I, Q, M, D, L Enable input

WXOR_DW
EN ENO

ENO BOOL I, Q, M, D, L Enable output

IN1

EN ENO
IN1 DWORD I, Q, M, D, L First value for logic operation

IN1

IN2 OUT
IN2 DWORD I, Q, M, D, L Second value for logic operation

IN2 OUT
O DWORD I, Q, M, D, L Result of logic operation

Status Word Bits

BR CC 1 CC 0 OV OS OR STA RLO FC
Write 1 x 0 0 – x 1 1 1

I 0.0 A signal state of 1 at input I 0.0 activates the instruction.

IN1 = 0101010101010101 0101010101010101
IN2 = 0000000000000000 0000111111111111
OUT = 0101010101010101 0101010101010101

The signal state of output Q 4.0 is 1 if the operation is
executed.

Q 4.0WXOR_DW

IN2
OUT

EN ENO

DW#16#FFF
MD4

IN1MD0

Function is executed (EN = 1):

Figure 15-6 WXOr Double Word

Description

Word Logic Instructions

16-1
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Shift and Rotate Instructions

Section Description Page

16.1 Shift Instructions 16-2

16.2 Rotate Instructions 16-10

Chapter Overview

16

16-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

16.1 Shift Instructions

You can use the Shift instructions to move the contents of input IN bit by bit
to the left or the right. Shifting to the left multiplies the contents of input IN
by 2 to the power n (2n); shifting to the right divides the contents of input IN
by 2 to the power n (2n). For example, if you shift the binary equivalent of
the decimal value 3 to the left by 3 bits, you obtain the binary equivalent of
the decimal value 24 in the accumulator. If you shift the binary equivalent of
the decimal value 16 to the right by 2 bits, you obtain the binary equivalent
of the decimal value 4 in the accumulator.

The number that you supply for input parameter N indicates the number of
bits by which to shift. The bit places that are vacated by the Shift instruction
are either filled with zeros or with the signal state of the sign bit (a 0 stands
for positive and a 1 stands for negative). The signal state of the bit that is
shifted last is loaded into the CC 1 bit of the status word (see Section 6.3).
The CC 0 and OV bits of the status word are reset to 0. You can use jump
instructions to evaluate the CC 1 bit.

The following Shift instructions are available:

� Shift Left Word, Shift Left Double Word

� Shift Right Word, Shift Right Double Word

� Shift Right Integer, Shift Right Double Integer

A signal state of 1 at the Enable (EN) input activates the Shift Left Word
instruction. This instruction shifts bits 0 to 15 of input IN bit by bit to the
left. There is no carry to bit 16.

Input N specifies the number of bits by which to shift. If N is larger than 16,
the command writes a 0 into the low word of accumulator 1 and resets the
CC 0 and OV bits of the status word to 0. The bit positions at the right are
padded with zeros. The result of the shift operation can be scanned at
output OUT.

The operation triggered by this instruction always resets the CC 0 and OV
bits of the status word to 0. If the box is executed (EN = 1), ENO shows the
signal state of the bit shifted last (same as CC 1 and RLO in the status word).
The result is that other functions following this box that are connected by the
ENO (cascade arrangement) are not executed if the bit shifted last had a
signal state of 0.

Certain restrictions apply to the placement of the Shift Left Word box (see
Section 6.1).

Shift Instructions

Shift Left Word

Shift and Rotate Instructions

16-3
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

15... ...8 7... ...0

0 1 0 1

0 1 0 1 0 1 0 10 0 0 0

0 1 0 01 1 0 1

IN

N

OUT 0 0 0 0

1 1 1 1

0 0 0 0 1 1

6 places

Parameters:

The signal state of the bit that is shifted out
last is stored in bit CC 1 of the status word
(same as the signal state of ENO).

These five bits
are lost.

The vacated places
are filled with zeros.

Table 16-1 Shift Left Word Box and Parameters

LAD Box Parameter Data Type Memory Area Description

SHL W
EN BOOL I, Q, M, D, L Enable input

SHL_W

EN ENO
ENO BOOL I, Q, M, D, L Enable output

IN

EN

OUT

ENO
IN WORD I, Q, M, D, L Value to shift

IN

N

OUT
N WORD I, Q, M, D, L Number of bit positions by which to shift

N
OUT WORD I, Q, M, D, L Result of shift operation

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x x x 0 – x 1 x x

I 0.0
A signal state of 1 at input I 0.0
activates the instruction.

Memory word MW0 is shifted to the
left by the number of bits specified in
memory word MW2.

The result is put into memory word
MW4. If the signal state of the bit
shifted last was 1, output Q4.0 is set.

Q 4.0SHL_W

N

OUT

EN ENO

MW2

IN

Function is executed (EN = 1):

MW4MW0

S

Figure 16-1 Shift Left Word

Shift and Rotate Instructions

16-4
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

A signal state of 1 at the Enable (EN) input activates the Shift Left Double
Word instruction. This instruction shifts bits 0 to 31 of input IN bit by bit to
the left. Input N specifies the number of bits by which to shift. If N is larger
than 32, the command writes a 0 in output 0 and resets the CC 0 and OV bits
of the status word to 0. The bit positions at the right are padded with zeros.
The result of the shift operation can be scanned at output OUT.

The operation triggered by this instruction always resets the CC 0 and OV
bits of the status word to 0 if N is not equal to 0. If the box is executed
(EN = 1), ENO shows the signal state of the bit shifted last (same as CC 1
and RLO in the status word). The result is that other functions following this
box that are connected by the ENO (cascade arrangement) are not executed if
the bit shifted last had a signal state of 0.

Certain restrictions apply to the placement of the Shift Left Double Word box
(see Section 6.1).

Table 16-2 Shift Left Double Word Box and Parameters

LAD Box Parameter Data Type Memory Area Description

SHL DW
EN BOOL I, Q, M, D, L Enable input

SHL_DW

EN ENO
ENO BOOL I, Q, M, D, L Enable output

IN

EN

OUT

ENO
IN DWORD I, Q, M, D, L Value to shift

IN
N

OUT
N WORD I, Q, M, D, L Number of bit positions by which to shiftN
OUT DWORD I, Q, M, D, L Result of shift operation

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x x x x – x x x 1

I 0.0 A signal state of 1 at input I 0.0 activates the
instruction.

Memory double word MD0 is shifted to the left by
the number of bits specified in memory word
MW4.

The result is put into memory double word
MD10. If the signal state of the bit shifted last
was 1, output Q 4.0 is set.

Q 4.0SHL_DW

N

OUT

EN ENO

MW4

IN

Function is executed (EN = 1):

MD10MD0

S

Figure 16-2 Shift Left Double Word

Shift Left Double
Word

Shift and Rotate Instructions

16-5
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

A signal state of 1 at the Enable (EN) input activates the Shift Right Word
instruction. This instruction shifts bits 0 to 15 of input IN bit by bit to the
right. Bits 16 to 31 are not affected. Input N specifies the number of bits by
which to shift. If N is larger than 16, the command writes a 0 in output 0 and
resets the CC 0 and OV bits of the status word to 0. The bit positions at the
left are padded with zeros. The result of the shift operation can be scanned at
output OUT.

The operation triggered by this instruction always resets the OV bit of the
status word to 0. If the box is executed (EN = 1), ENO shows the signal state
of the bit shifted last (same as CC 1 and RLO in the status word). The result
is that other functions following this box that are connected by the ENO
(cascade arrangement) are not executed if the bit shifted last had a signal
state of 0.

Certain restrictions apply to the placement of the Shift Right Word box (see
Section 6.1).

Table 16-3 Shift Right Word Box and Parameters

LAD Box Parameter Data Type Memory Area Description

SHR W
EN BOOL I, Q, M, D, L Enable input

SHR_W

EN ENO
ENO BOOL I, Q, M, D, L Enable output

IN

EN

OUT

ENO
IN WORD I, Q, M, D, L Value to shift

IN

N

OUT
N WORD I, Q, M, D, L Number of bit positions by which to shift

N
O WORD I, Q, M, D, L Result of shift operation

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x x x x – x x x 1

I 0.0 A signal state of 1 at input I 0.0 activates the
instruction.

Memory word MW0 is shifted to the right by the
number of bits specified in memory word MW2.

The result is put into memory word MW4. If the
signal state of the bit shifted last was 1, output
Q 4.0 is set.

Q 4.0SHR_W

N

OUT

EN ENO

MW2

IN

Function is executed (EN = 1):

MW4MW0

S

Figure 16-3 Shift Right Word

Shift Right Word

Shift and Rotate Instructions

16-6
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

A signal state of 1 at the Enable (EN) input activates the Shift Right Double
Word instruction. This instruction shifts bits 0 to 31 of input IN bit by bit to
the right. Input N specifies the number of bits by which to shift. If N is larger
than 32, the command writes a 0 in output 0 and resets the CC 0 and OV bits
of the status word to 0. The bit positions at the left are padded with zeros.
The result of the shift operation can be scanned at output OUT.

The operation triggered by this instruction always resets the OV bit of the
status word to 0. If the box is executed (EN = 1), ENO shows the signal state
of the bit shifted last (same as CC 1 and RLO in the status word). The result
is that other functions following this box that are connected by the ENO
(cascade arrangement) are not executed if the bit shifted last had a signal
state of 0.

Certain restrictions apply to the placement of the Shift Right Double Word
box (see Section 6.1).

1 1 1

31... ...16 15... ...0

1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1

0 1 0 10 0 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 1 1 1

3 places

The vacated places
are filled with zeros. The signal state of the bit that is

shifted out last is stored in bit
CC 1 of the status word (same
as the signal state of ENO).

These two
bits are lost.

IN

N

OUT

Parameters:

Figure 16-4 Shifting Bits of Input IN Three Bits to the Right

Table 16-4 Shift Right Double Word Box and Parameters

LAD Box Parameter Data Type Memory Area Description

SHR DW
EN BOOL I, Q, M, D, L Enable input

SHR_DW

EN ENO
ENO BOOL I, Q, M, D, L Enable output

IN

EN

OUT

ENO
IN DWORD I, Q, M, D, L Value to shift

IN

N

OUT
N WORD I, Q, M, D, L Number of bit positions by which to shift

N
OUT DWORD I, Q, M, D, L Result of shift operation

Shift Right Double
Word

Shift and Rotate Instructions

16-7
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x x x x – x x x 1

I 0.0 A signal state of 1 at input I 0.0 activates the
instruction.

Memory double word MD0 is shifted to the right
by the number of bits specified in memory word
MW4.

The result is put into MD10. If the signal state of
the bit shifted last was 1, output Q 4.0 is set.

Q 4.0SHR_DW

N

OUT

MW4

IN

Function is executed (EN = 1):

MD10MD0

SEN ENO

Figure 16-5 Shift Right Double Word

A signal state of 1 at the Enable (EN) input activates the Shift Right Integer
instruction. This instruction shifts bits 0 to 15 of input IN bit by bit to the
right. Input N specifies the number of bits by which to shift. If N is larger
than 16, the command behaves as if N were 16. The bit positions at the left
are padded according to the signal state of bit 15 (which is the sign of an
integer number), that is, they are filled with zeros if the number is positive,
and with ones if it is negative. The result of the shift operation can be
scanned at output OUT.

The operation triggered by this instruction always resets the CC 0 and OV
bits of the status word to 0. If the box is executed (EN = 1), ENO shows the
signal state of the bit shifted last (same as CC 1 and RLO in the status word).
The result is that other functions following this box that are connected by the
ENO (cascade arrangement) are not executed if the bit shifted last had a
signal state of 0.

Certain restrictions apply to the placement of the Shift Right Integer box (see
Section 6.1).

Shift Right Integer

Shift and Rotate Instructions

16-8
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

15... ...8 7... ...0

1 0 1 0

0 0 0 0 1 0 1 01 0 1 0

1 1 1 11 1 1 1 0 0 0 0

1 1 1 1

4 places

The signal state of the bit that is
shifted out last is stored in bit
CC 1 of the status word (same as
the signal state of ENO).

The vacated places are
filled with the signal
state of the sign bit.

1 0 1 0

These three
bits are lost.

Sign bit

IN

N

OUT

Parameters:

Figure 16-6 Shifting Bits of Input IN Four Bits to the Right with Sign

Table 16-5 Shift Right Integer Box and Parameters

LAD Box Parameter Data Type Memory Area Description

SHR I
EN BOOL I, Q, M, D, L Enable input

SHR_I

EN ENO
ENO BOOL I, Q, M, D, L Enable output

IN

EN

OUT

ENO
IN INT I, Q, M, D, L Value to shift

IN

N

OUT
N WORD I, Q, M, D, L Number of bit positions by which to shift

N
OUT INT I, Q, M, D, L Result of shift operation

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x x x x – x x x 1

I 0.0 A signal state of 1 at input I 0.0 activates the
instruction.

Memory word MW0 is shifted to the right by
the number of bits specified in memory word
MW2.

The result is put into memory word MW4. If the
signal state of the bit shifted last was 1, output
Q 4.0 is set.

Q 4.0SHR_I

N

OUT

MW2

IN

Function is executed (EN = 1):

MW4MW0

SEN ENO

Figure 16-7 Shift Right Integer

Shift and Rotate Instructions

16-9
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

A signal state of 1 at the Enable (EN) input activates the Shift Right Double
Integer instruction. This instruction shifts the entire contents of input IN bit
by bit to the right. Input N specifies the number of bits by which to shift. If N
is larger than 32, the command behaves as if N were 32. The bit positions at
the left are padded according to the signal state of bit 31 (which is the sign of
a double integer number), that is, they are filled with zeros if the number is
positive, and with ones if it is negative. The result of the shift operation can
be scanned at output OUT.

The operation triggered by this instruction always resets the CC 0 and OV
bits of the status word to 0. If the box is executed (EN = 1), ENO shows the
signal state of the bit shifted last (same as CC 1 and RLO in the status word).
The result is that other functions following this box that are connected by the
ENO (cascade arrangement) are not executed if the bit shifted last had a
signal state of 0.

Certain restrictions apply to the placement of the Shift Right Double Integer
box (see Section 6.1).

Table 16-6 Shift Right Double Integer Box and Parameters

LAD Box Parameter Data Type Memory Area Description

SHR DI
EN BOOL I, Q, M, D, L Enable input

SHR_DI

EN ENO
ENO BOOL I, Q, M, D, L Enable output

IN

EN

OUT

ENO
IN DINT I, Q, M, D, L Value to shift

IN

N

OUT
N WORD I, Q, M, D, L Number of bit positions by which to shift

N
OUT DINT I, Q, M, D, L Result of shift operation

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x x x x – x x x 1

I 0.0 A signal state of 1 at input I 0.0 activates the
instruction.

Memory double word MD0 is shifted to the right by
the number of bits specified in memory word MW4.

The result is put into memory double word MD10.
If the signal state of the bit shifted last was 1,
output Q 4.0 is set.

Q 4.0SHR_DI

N

OUT

MW4

IN

Function is executed (EN = 1):

MD10MD0

SEN ENO

Figure 16-8 Shift Right Double Integer

Shifting Right
Double Integer

Shift and Rotate Instructions

16-10
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

16.2 Rotate Instructions

You can use the Rotate instructions to rotate the entire contents of input IN
bit by bit to the left or to the right. The vacated bit places are filled with the
signal states of the bits that are shifted out of input IN.

The number that you supply for input parameter N specifies the number of
bits by which to rotate.

Depending on the instruction, rotation takes place via the CC 1 bit of the
status word (see Section 6.3). The CC 0 bit of the status word is reset to 0.

The following Rotate instructions are available:

� Rotate Left Double Word

� Rotate Right Double Word

A signal state of 1 at the Enable (EN) input activates the Rotate Left Double
Word instruction. This instruction rotates the entire contents of input IN bit
by bit to the left. Input N specifies the number of bits by which to rotate. If N
is larger than 32, the double word is rotated ((N–1) modulo 32) +1) places.
The bit positions at the right are filled with the signal states of the bits
rotated. The result of the rotate operation can be scanned at output OUT.

The operation triggered by this instruction always resets the CC 0 and OV
bits of the status word to 0. If the box is executed (EN = 1), ENO shows the
signal state of the bit shifted last (same as CC 1 and RLO in the status word,
see Figure 16-9). The result is that other functions following this box that are
connected by the ENO (cascade arrangement) are not executed if the bit
shifted last had a signal state of 0.

Certain restrictions apply to the placement of the Rotate Left Double Word
box (see Section 6.1).

1 1 1

31... ...16 15... ...0

1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 1 1 11 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1

3 places

The signal states of the three
bits that are shifted out are
inserted in the vacated places.

The signal state of the last
bit shifted is also stored in
bit CC 1 (same as the signal
state of ENO).

IN

N

OUT

Parameters:

Figure 16-9 Rotating Bits of Input IN Three Bits to the Left

Description

Rotate Left Double
Word

Shift and Rotate Instructions

16-11
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Table 16-7 Rotate Left Double Word Box and Parameters

LAD Box Parameter Data Type Memory Area Description

EN BOOL I, Q, M, D, L Enable input

ROL_DW

EN ENO
ENO BOOL I, Q, M, D, L Enable output

IN

EN

OUT

ENO IN DWORD I, Q, M, D, L Value to rotate
IN

N

OUT
N WORD I, Q, M, D, L

Number of bit positions by which to
rotate

OUT DWORD I, Q, M, D, L Result of rotate operation

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x x x x – x x x 1

I 0.0 A signal state of 1 at input I 0.0 activates the
instruction.

Memory double word MD0 is rotated to the left
by the number of bits specified in memory word
MW4.

The result is put into memory double word
MD10. If the signal state of the bit shifted last
was 1, output Q 4.0 is set.

Q 4.0ROL_DW

N

OUT

EN ENO

MW4

IN

Function is executed (EN = 1):

MD10MD0

S

Figure 16-10 Rotate Left Double Word

A signal state of 1 at the Enable (EN) input activates the Rotate Right Double
Word instruction. This instruction rotates the entire contents of input IN bit
by bit to the right. Input N specifies the number of bits by which to rotate.
The value of N can be between 0 and 31. If N is larger than 32, the double
word is rotated ((N–1) modulo 32) +1) places. The bit positions at the left are
filled with the signal states of the bits rotated. The result of the rotate
operation can be scanned at output OUT.

The operation triggered by this instruction always resets the CC 0 and OV
bits of the status word to 0. If the box is executed (EN = 1), ENO shows the
signal state of the bit shifted last (same as CC 1 and RLO in the status word).
The result is that other functions following this box that are connected by the
ENO (cascade arrangement) are not executed if the bit shifted last had a
signal state of 0.

Certain restrictions apply to the placement of the Rotate Right Double Word
box (see Section 6.1).

Rotate Right
Double Word

Shift and Rotate Instructions

16-12
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

1 0 1

31... ...16 15... ...0

1 0 1 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1

1 1 1 01 0 1 1 0 1 0 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 0

3 places

The signal state of the last bit shifted
is also stored in bit CC 1 (same as
the signal state of ENO).

The signal states of
the three bits that are
shifted out are inserted
in the vacated places.

IN

N

OUT

Parameters:

Figure 16-11 Rotating Bits of Input IN Three Bits to the Right

Table 16-8 Rotate Right Double Word Box and Parameters

LAD Box Parameter Data Type Memory Area Description

EN BOOL I, Q, M, D, L Enable input

ROR_DW

EN ENO
ENO BOOL I, Q, M, D, L Enable output

IN

EN

OUT

ENO IN DWORD I, Q, M, D, L Value to rotate
IN

N

OUT
N WORD I, Q, M, D, L

Number of bit positions by which to
rotate

OUT DWORD I, Q, M, D, L Result of rotate operation

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x x x x – x x x 1

I 0.0 A signal state of 1 at input I 0.0 activates the
instruction.

Memory double word MD0 is rotated to the right
by the number of bits specified in memory word
MW4.

The result is put into memory double word
MD10. If the signal state of the bit shifted last
was 1, output Q 4.0 is set.

Q 4.0ROR_DW

N

OUT

MW4

IN

Function is executed (EN = 1):

MD10MD0

SENOEN

Figure 16-12 Rotate Right Double Word

Shift and Rotate Instructions

17-1
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Data Block Instructions

Section Description Page

17.1 Open Data Block: DB or DI 17-2

Chapter Overview

17

17-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

17.1 Open Data Block: DB or DI

You can use the Open Data Block: DB or DI instruction to open an already
existing data block as DB or DI. The number of the data block is transferred
in the DB or DI register. The subsequent DB and DI commands access the
corresponding blocks depending on the register contents.

Table 17-1 Open Data Block: DB or DI Element and Parameters, with International Short Name

LAD Element Parameter Data Type Memory Area Description

<DB number> or
<DI number>

OPN

Number of
DB or DI

BLOCK_DB –
The number range of DB or DI
depends on your CPU.

Table 17-2 Open Data Block: DB or DI Element and Parameters, with SIMATIC Short Name

LAD Element Parameter Data Type Memory Area Description

<DB number> or
<DI number>

AUF

Number of
DB or DI

BLOCK_DB –
The number range of DB or DI
depends on your CPU.

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – – – – –

DB10 is the currently opened
data block. That is why the
scan at DBX0.0 refers to bit 0
of data byte 0 of data block
DB10. The signal state of this
bit is assigned to output Q 4.0.

OPN

DB10

DBX0.0 Q 4.0

This instruction does not read or change the bits of the status word.

Figure 17-1 Open Data Block: DB or DI

Description

Data Block Instructions

18-1
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Jump Instructions

Section Description Page

18.1 Overview 18-2

18.2 Jump in the Block If RLO = 1 (Unconditional Jump) 18-3

18.3 Jump in the Block If RLO = 1 (Conditional Jump) 18-4

18.4 Jump in the Block If RLO = 0 (Jump-If-Not) 18-5

18.5 Label 18-6

Chapter Overview

18

18-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

18.1 Overview

The address of a Jump instruction is a label. A label consists of a maximum
of four characters. The first character must be a letter of the alphabet; the
other characters can be letters or numbers (for example, SEG3). The jump
label indicates the destination to which you want the program to jump.

You enter the label above the jump coil (see Figure 18-1).

The destination label must be at the beginning of a network. You enter the
destination label at the beginning of the network by selecting LABEL from
the ladder logic browser. An empty box appears. In the box, you type the
name of the label (see Figure 18-1).

SEG3

SEG3

JMP

R

I 0.4 Q 4.1

Network 1

Network X

Q 4.0
Network 2

.

.

.

I 0.1

Figure 18-1 Label as Address and Destination

Label as Address

Label as
Destination

Jump Instructions

18-3
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

18.2 Jump in the Block If RLO = 1 (Unconditional Jump)

The Unconditional Jump instruction corresponds to a “go to label”
instruction. No additional LAD element may be positioned between the left
power rail and the operation. None of the instructions between the jump
operation and the label is executed.

You can use this instruction in all logic blocks: organization blocks (OBs),
function blocks (FBs), and functions (FCs).

Table 18-1 Unconditional Jump Element and Parameters

LAD Element Parameter Data Type Memory Area Description

JMP

<address> Name of a
label

– – The address determines the mark to
which the absolute jump is made.

Status Word Bits

BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – – – – –

CAS1

CAS1

JMP

R

I 0.4 Q 4.1

Network 1

Network X

The jump is executed every time. None of
the instructions between the jump
operation and the label is executed.

Figure 18-2 Unconditional Jump: Go to Label

Description

Jump Instructions

18-4
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

18.3 Jump in the Block If RLO = 1 (Conditional Jump)

The Conditional Jump instruction corresponds to a “go to label” instruction if
RLO = 1. Use the Ladder element “Jump unconditional” for this operation
but only with an advance logic operation. The conditional jump is only
executed when the result of this logic operation is RLO = 1. None of the
instructions between the jump operation and the label is executed.

You can use this instruction in all logic blocks: organization blocks (OBs),
function blocks (FBs), and functions (FCs).

Table 18-2 Conditional Jump Element and Parameters

LAD Element Parameter Data Type Memory Area Description

JMP

<address> Name of a
label

– – The address determines the mark to
which the jump is made when the
RLO = 1.

JMP

Network 1

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – 0 1 1 0

I 0.0

Q 4.0I 0.3

If the signal state of input I 0.0 is 1, the
jump to label CAS1 is executed. The
instruction to reset output Q 4.0 is not
executed, even if the signal state of input
I 0.3 is 1.

CAS1

Q 4.1I 0.4
Network 3

R

R

CAS1

Network 2

Figure 18-3 Conditional Jump: Go to Label

Description

Jump Instructions

18-5
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

18.4 Jump in the Block If RLO = 0 (Jump-If-Not)

The Jump-If-Not instruction corresponds to a “go to label” instruction that is
executed if the RLO is 0.

You can use this instruction in all logic blocks: organization blocks (OBs),
function blocks (FBs), and functions (FCs).

Table 18-3 Jump-If-Not Element and Parameters

LAD Element Parameter Data Type Memory Area Description

JMP N

<address> Name of a
label

– – The address determines the mark to
which the jump is made when the
RLO = 0.

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – 0 1 1 0

CAS1

JMPN

R

I 0.4 Q 4.1

Network 1

Network 3

If the signal state of input I 0.0 is 0, the
jump to label CAS1 is executed. The
instruction to reset output Q 4.0 is not
executed, even if the signal state of input
I 0.3 is 1.

None of the instructions between the
jump operation and the label is executed.

I 0.0

R

I 0.3 Q 4.0

CAS1

Network 2

Figure 18-4 Jump-If-Not

Description

Jump Instructions

18-6
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

18.5 Label

LABEL is the identifier for the destination of a jump instruction. For every
–––(JMP) or –––(JMPN) a label must exist.

LAD Element Description

LABEL

4 characters:
First character: letter

remaining characters: letter or alphanumeric

CAS1

JMP

R

I 0.4 Q 4.1

Network 1

Network 3

If I 0.0 = 1, the jump to label CAS1 is
executed.

Due to the jump, the operation “Reset
output” at Q 4.0 is not executed even if
I 0.3 = 1.

I 0.0

R

I 0.3 Q 4.0
Network 2

CAS1

Figure 18-5Label

Description

Jump Instructions

19-1
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Status Bit Instructions

Section Description Page

19.1 Overview 19-2

19.2 Exception Bit BR Memory 19-3

19.3 Result Bits 19-4

19.4 Result Bit Unordered 19-6

19.5 Exception Bit Overflow 19-7

19.6 Exception Bit Overflow Stored 19-9

Chapter Overview

19

19-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

19.1 Overview

The status bit instructions are bit logic instructions (see Section 8.1) that
work with the bits of the status word (see Section 6.3). Each of these
instructions reacts to one of the following conditions that is indicated by one
or more bits of the status word:

� The binary result bit is set (that is, has a signal state of 1).

� The result of a math function is related to 0 in one of the following ways:

– Greater than 0 (>0)

– Less than 0 (<0)

– Greater than or equal to 0 (>=0)

– Less than or equal to 0 (<=0)

– Equal to 0 (==0)

– Not equal to 0 (<>0)

� The result of a math function is unordered.

� A math function had an overflow.

When a status bit instruction is connected in series, it combines the result of
its signal state check with the previous result of logic operation according to
the And truth table (see Section 6.2 and Table 6-8). When a status bit
instruction is connected in parallel, it combines its result with the previous
RLO according to the Or truth table (see Section 6.2 and Table 6-9).

In this chapter, the Exception Bit BR Memory element, which checks the
signal state of the BR (Binary Result) bit of the status word, is shown in its
international and SIMATIC form.

The status word is a register in the memory of your CPU that contains bits
that you can reference in the address of bit and word logic instructions.
Figure 19-1 shows the structure of the status word. For more information on
the individual bits of the status word, see Section 6.3.

28215... ...29 2427 26 25 2023 22 21

BR OSCC 1 CC 0 OV FCOR STA RLO

Figure 19-1 Structure of the Status Word

The following LAD elements do not have any enterable parameters.

Description

Status Word

Parameters

Status Bit Instructions

19-3
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

19.2 Exception Bit BR Memory

You can use the Exception Bit BR Memory instruction to check the signal
state of the BR (Binary Result) bit of the status word (see Section 6.3). When
used in series, this instruction combines the result of its check with the
previous result of logic operation (RLO) according to the And truth table
(see Section 6.2 and Table 6-8). When used in parallel, this instruction
combines the result of its check with the previous RLO according to the Or
truth table (see Section 6.2 and Table 6-9).

Figure 19-2 shows the Exception Bit BR Memory element and its negated
form. The elements are pictured with their international and SIMATIC short
names.

BR

BR

BIE

BIE

International element SIMATIC element

Figure 19-2 Exception Bit BR Memory Element and Its Negated Form

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – x x x 1

I 0.0
Output Q 4.0 is set if the signal state at input
I 0.0 is 1 or the signal state at input I 0.2 is 0,
and, in addition to this RLO, the signal state
of the BR bit is 1.

BR Q 4.0

S

I 0.2

Figure 19-3 Exception Bit BR Memory

Description

The Element and
Its Negated Form

Status Bit Instructions

19-4
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

19.3 Result Bits

You can use the Result Bit instructions to determine the relationship of the
result of a math function to zero, that is, if the result is >0, <0, >=0, <=0,
==0, or <>0. This instruction uses a comparison to zero as its address (see
Table 19-1). Internally, the CPU goes to the condition code bits of the status
word (CC 1 and CC 0, see Section 6.3) and checks the combination of signal
states in these locations. The combination tells the CPU the relationship of
the result to 0. If the comparison condition indicated in the address is
fulfilled, the result of this signal state check is 1.

When used in series, this instruction combines the result of its check with the
previous result of logic operation (RLO) according to the And truth table
(see Section 6.2 and Table 6-8). When used in parallel, this instruction
combines the result of its check with the previous RLO according to the Or
truth table (see Section 6.2 and Table 6-9).

Table 19-1 Result Bit Elements and Their Negated Forms

LAD Element Description

 > 0

 > 0
The Result Bit Greater Than 0 instruction determines whether or not the result of a math
function is greater than 0. This instruction checks the combination in the CC 1 and CC 0
(condition code) bits of the status word to determine the relationship of a result to 0.

 < 0

 < 0

The Result Bit Less Than 0 instruction determines whether or not the result of a math
function is less than 0. This instruction checks the combination in the CC 1 and CC 0
(condition code) bits of the status word to determine the relationship of a result to 0.

 > = 0

 > = 0

The Result Bit Greater Equal 0 instruction determines whether or not the result of a math
function is greater than or equal to 0. This instruction checks the combination in the CC 1
and CC 0 (condition code) bits of the status word to determine the relationship of a result
to 0.

 < = 0

 < = 0

The Result Bit Less Equal 0 instruction determines whether or not the result of a math
function is less than or equal to 0. This instruction checks the combination in the CC 1
and CC 0 (condition code) bits of the status word to determine the relationship of a result
to 0.

 == 0

 == 0

The Result Bit Equal 0 instruction determines whether or not the result of a math
function is equal to 0. This instruction checks the combination in the CC 1 and CC 0
(condition code) bits of the status word to determine the relationship of a result to 0.

< > 0

< > 0

The Result Bit Not Equal 0 instruction determines whether or not the result of a math
function is not equal to 0. This instruction checks the combination in the CC 1 and CC 0
(condition code) bits of the status word to determine the relationship of a result to 0.

Description

Status Bit Instructions

19-5
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – x x x 1

I 0.0
If the signal state at input I 0.0 is 1, the
SUB_I box is activated. If the value of
input word IW0 is higher than the value of
input word IW2, the result of the math
function IW0 – IW2 is greater than 0.
If the signal state of EN is 1 (activated)
and an error occurs while the instruction
is being executed, the signal state of ENO
is 0.

Output Q 4.0 is set if the function is
executed properly and the result is
greater than 0. If the signal state of input
I 0.0 is 0 (not activated), the signal state
of both EN and ENO is 0.

Output Q 4.0 is set if the function is
executed properly and the result is less
than or equal to 0. If the signal state of
input I 0.0 is 0 (not activated), the signal
state of both EN and ENO is 0. If the
signal state of EN is 1 (activated) and an
error occurs while the instruction is being
executed, the signal state of ENO is 0.

Q 4.0SUB_I

IN2

OUT

EN ENO

IN2

IW0

IW2 MW10

S

> 0

I 0.0 Q 4.0SUB_I

IN2

OUT

EN ENO

IN2

IW0

IW2 MW10

S

> 0

Figure 19-4 Result Bit Greater Than 0 and Negated Result Bit Greater Than 0

Status Bit Instructions

19-6
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

19.4 Exception Bits Unordered

You can use the Exception Bit Unordered instruction to check whether or not
the result of a floating-point math function is unordered (that is, if one of the
values in the math function is not a valid floating-point number). Therefore,
the condition code bits of the status word (CC 1 and CC 0, see Section 6.3)
are evaluated. If the result of the math function is unordered (UO) the signal
state check produces a result of 1. If the combination in CC 1 and CC 0 does
not indicate unordered, the result of the signal state check is 0.

When used in series, this instruction combines the result of its check with the
previous result of logic operation (RLO, see Section 6.3) according to the
And truth table (see Section 6.2 and Table 6-8). When used in parallel, this
instruction combines the result of its check with the previous RLO according
to the Or truth table (see Section 6.2 and Table 6-9).

UO

UO

Figure 19-5 Exception Bit Unordered Element and Its Negated Form

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – x x x 1

I 0.0

If the signal state at input I 0.0 is 1, the
DIV_R box is activated. If the value of either
input double word ID0 or ID4 is not a valid
floating-point number, the floating-point
math function is unordered. If the signal
state of EN is 1 (activated) and an error
occurs while the instruction is being
executed, the signal state of ENO is 0.

Output Q 4.0 is set if the function DIR_V is
executed, but one of the values in the math
function is not a valid floating-point number.
If the signal state of input I 0.0 is 0 (not
activated), the signal state of both EN and
ENO is 0.

DIV_R

IN1

OUT

EN ENO

IN2

ID0

ID4 MD10

UO Q 4.0

S

Figure 19-6 Exception Bit Unordered

Description

The Element and
Its Negated Form

Status Bit Instructions

19-7
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

19.5 Exception Bit Overflow

You can use the Exception Bit Overflow instruction to recognize an overflow
(OV) in the last math function. If, after the system executes a math function,
the result is outside the permissible negative range or outside the permissible
positive range, the OV bit in the status word (see Section 6.3) is set. The
instruction checks the signal state of this bit. This bit is reset by error-free
running math functions.

When used in series, this instruction combines the result of its check with the
previous result of logic operation according to the And truth table
(see Section 6.2 and Table 6-8). When used in parallel, this instruction
combines the result of its check with the previous RLO according to the Or
truth table (see Section 6.2 and Table 6-9).

OV

OV

Figure 19-7 Exception Bit Overflow Element and Its Negated Form

Description

The Element and
Its Negated Form

Status Bit Instructions

19-8
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Status Word Bits

I 0.0 If the signal state at input I 0.0 is 1, the SUB_I
box is activated. If the result of the math function
input word IW0 minus input word IW2 is outside
the permissible range for an integer, the OV bit in
the status word is set.

The result of a signal state check with OV is 1.
Output Q 4.0 is set if the check with OV is 1 and
the RLO of network 2 is 1 (that is, if the RLO just
prior to output Q 4.0 is 1).

If the signal state of input I 0.0 is 0 (not
activated), the signal state of both EN and ENO
is 0. If the signal state of EN is 1 (activated) and
the result of the math function is out of range, the
signal state of ENO is 0.

Note: The check with OV is only necessary
because of the different networks. Otherwise, it is
possible to take the ENO output of the math
function, which is 0 if the result is outside the
permissible range.

SUB_I

IN2

OUT

EN ENO

IN2

IW0

IW2 MW10

Network 1:

OV

Network 2:

I 0.1 I 0.2

I 0.2

Q 4.0

S

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – x x x 1

Figure 19-8 Exception Bit Overflow

Status Bit Instructions

19-9
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

19.6 Exception Bit Overflow Stored

You can use the Exception Bit Overflow Stored instruction to recognize a
latching overflow (overflow stored, OS) in a math function. If, after the
system executes a math function, the result is outside the permissible
negative range or outside the permissible positive range, the OS bit in the
status word (see Section 6.3) is set. The instruction checks the signal state of
this bit. Unlike the OV (overflow) bit, the OS bit remains set by error-free
running math functions (see Section 19.5).

When used in series, this instruction combines the result of its check with the
previous result of logic operation (RLO) according to the And truth table
(see Section 6.2 and Table 6-8). When used in parallel, this instruction
combines the result of its check with the previous RLO according to the Or
truth table (see Section 6.2 and Table 6-9).

OS

OS

Figure 19-9 Exception Bit Overflow Stored Element and Its Negated Form

Description

The Element and
Its Negated Form

Status Bit Instructions

19-10
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – x x x 1

I 0.0 If the signal state at input I 0.0 is 1, the
MUL_I box is activated. If the signal state
at input I 0.1 is 1, the ADD_I box is
activated. If the result of one of the math
functions is outside the permissible range
for an integer, the OS bit in the status
word is set.

The result of a signal state check with OS
is 1. Output Q 4.0 is set if the check with
OS is 1.

In network 1, if the signal state of input
I 0.0 is 0 (not activated), the signal state
of both EN and ENO is 0. If the signal
state of EN is 1 (activated) and the result
of the math function is out of range, the
signal state of ENO is 0.

In network 2, if the signal state of input
I 0.1 is 0 (not activated), the signal state
of both EN and ENO is 0. If the signal
state of EN is 1 (activated) and the result
of the math function is out of range, the
signal state of ENO is 0.

Note: The check with OS is only
necessary because of the different
networks. Otherwise it is possible to take
the ENO output of the first math function
and connect it with the EN input of the
second (cascade arrangement).

MUL_I

IN1

OUT

EN ENO

IN2

IW0

IW2 MD8

Network 1:

Network 2:

OS
Network 3:

Q 4.0

S

I 0.1 ADD_I

IN1

OUT

EN ENO

IN2

IW0

IW2 MW12

Figure 19-10 Exception Bit Overflow Stored

Status Bit Instructions

20-1
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Program Control Instructions

Section Description Page

20.1 Calling FCs/SFCs from Coil 20-2

20.2 Calling FBs, FCs, SFBs, SFCs, and Multiple Instances 20-4

20.3 Return 20-7

20.4 Master Control Relay Instructions 20-8

20.5 Master Control Relay Activate/Deactivate 20-9

20.6 Master Control Relay On/Off 20-12

Chapter Overview

20

20-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

20.1 Calling FCs/SFCs from Coil

You can use the Call FC/SFC from Coil instruction to call a function (FC) or
a system function (SFC) that has no parameters. Depending on the preceding
link, the call is conditional or unconditional (see the example in Figure 20-1).

In the case of a conditional call, you cannot enter parameters of data type
BLOCK_FC in the code section of a function (FC). Within a function block
(FB), however, you can enter BLOCK_FC as a parameter type.

A conditional call is executed only if the RLO is 1. If a conditional call is not
executed, the RLO after the call instruction is 0. If the instruction is
executed, it performs the following functions:

� Saves the address that it needs to return to the calling block

� Saves the selectors of both current data blocks (DB and DI)

� Changes the current local data range to the previous local data range

� Pushes the MA bit (MCR Active bit) to the block stack (BSTACK)

� Creates the new local data range for the called FC or SFC

After all this, program processing continues in the called block. For
information on the passing of parameters, see the Programming Manual
/120/.

Table 20-1 Call FC/SFC from Coil Element and Parameter

LAD Element Parameter Data Type Memory Area Description

 CALL
Number

Number BLOCK_FC –

Number of the FC or SFC (for example,
FC10 or SFC59). The SFCs that are
available depend on your CPU.

In the case of a conditional call, you
cannot enter parameters of data type
BLOCK_FC within a function (FC).
Within a function block, however, you
can enter BLOCK_FC as a parameter
type.

Description

Program Control Instructions

20-3
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

OPN

If the unconditional call of FC10 is executed, the CALL instruction performs the following
functions:

� Saves the address that it needs to return to the current FB
� Saves the selectors for DB10 and for the instance data block of the FB
� Pushes the MA bit, set to 1 in the MCRA instruction, to the block stack (BSTACK) and

resets this bit to 0 for the called FC10

Program processing continues in FC10. If you want to use the MCR function in FC10, you must
reactivate it there. When FC10 is finished, program processing returns to the calling FB. The
MA bit is restored, and DB10 and the instance data block of the user-defined FB are the current
DBs again, regardless of which DBs FC10 used.

After jumping back from FC10 the signal state of input I 0.0 is assigned to output Q 4.0. The call
of FC11 is a conditional call. It is executed only if the signal state of input I 0.1 is 1. If the call is
executed, the function is the same as for calling FC10.

I 0.0 Q 4.0

I 0.1 FC11

DB10

MCRA

CALL
FC10

CALL

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – 0 0 1 – 0

MCRD

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – 0 0 1 1 0

Unconditional Call

Conditional Call

Figure 20-1 Call FC/SFC from Coil

Program Control Instructions

20-4
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

20.2 Calling FBs, FCs, SFBs, SFCs, and Multiple Instances

You can call function blocks (FBs), functions (FCs), system function blocks
(SFBs), and system functions (SFCs), and multiple instances by selecting
them from the “Program Elements” list box. They are at the end of the list of
instruction families under the following names:

� FB Blocks

� FC Blocks

� SFB Blocks

� SFC Blocks

� Multiple Instances

� Libraries

When you select one of these blocks, a box appears on your screen with the
number or symbolic name of the function or function block and the
parameters that belong to it.

The block that you call must have been compiled and must already exist in
your program file, in the library, or on the CPU.

If the call FB, FC, SFB, SFC, and multiple instances instruction is executed,
it performs the following functions:

� Saves the address that it needs to return to the calling block

� Saves the selectors of both current data blocks (DB and DI)

� Changes the previous local data range to the current local data range

� Pushes the MA bit (MCR Active bit) to the block stack (BSTACK)

� Creates the new local data range for the called FC or SFC

Note

When the DB and DI registers are saved, they may not point to the data
blocks that you opened. Because of the copy-in and copy-out mechanism for
passing parameters, especially where function blocks are concerned, the
compiler sometimes overwrites the DB register. See the Programming
Manual /234/ for more details.

After this, program processing continues in the called block.

Description

Program Control Instructions

20-5
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

The enable output (ENO) of a Ladder box corresponds to the BR bit of the
status word (see Section 6.3). When writing a function block or function that
you want to call from Ladder, no matter whether you write the FB or FC in
STL or Ladder, you are responsible for managing the BR bit. You should use
the SAVE instruction (in STL) or the –––(SAVE) coil (in Ladder) to store an
RLO in the BR bit according to the following criteria:

� Store an RLO of 1 in the BR bit for a case where the FB or FC is
executed without error.

� Store an RLO of 0 in the BR bit for a case where the FB or FC is
executed with error

You should program these instructions at the end of the FB or FC so that
these are the last instructions that are executed in the block.

!
Warning

Possible unintentional resetting of the BR bit to 0.

When writing FBs and FCs in LAD, if you fail to manage the BR bit as
described above, one FB or FC may overwrite the BR bit of another FB
or FC.

To avoid this problem, store the RLO at the end of each FB or FC as
described above.

Figure 20-2 shows the effects of a conditional and an unconditional call of a
block on the bits of the status word (see Section 6.3).

Conditional:
Unconditional:

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x – – – 0 0 1 1 x
Write – – – – 0 0 1 – x

Figure 20-2 Effect of a Block Call on the Bits of the Status Word

Enable Output

Effect of the Call
on the Bits of the
Status Word

Program Control Instructions

20-6
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

The parameters that have been defined in the VAR section of the block will
be displayed in the ladder box. Supplying parameters differs depending on
the type of block as follows:

� For a function (FC), you must supply actual parameters for all of the
formal parameters.

� The entry of actual parameters is optional with function blocks (FBs).
You must, however, attach an instance data block (instance DB) to the
FB. If an actual parameter has not been attached to a formal parameter,
the FB works with the values that exist in its instance DB.

� With multiple instances, you do not need to specify the instance DB since
the box that is called has already been assigned the DB number (for more
information about declaring multiple instances, refer to Section 3.5).

For structured IN/OUT parameters and parameters of the types “Pointer” and
“Array”, you must make an actual parameter available (at least during the
first call).

Every actual parameter that you make available when calling a function
block must have the same data type as its formal parameter.

For information on how to program a function or how to work with its
parameters, see the Programming Manual /234/.

Table 20-2 shows a box for calling FBs, FCs, SFBs, SFCs, and multiple
instances and describes the parameters common to the box for all these
blocks. When you call your block from the Instruction Browser, the block
number appears automatically at the top of the block (number of the FB, FC,
SFB, or SFC, for example, FC10).

Table 20-2 Box and Parameters for Calling FBs, FCs, SFBs, SFCs, and Multiple Instances

LAD Box Parameter Data Type Memory Area Description

Block no.
EN ENO

DB No.
DB No. BLOCK_DB –

Instance data block number. You need to
supply this information for calling FBs
only.

EN ENO

IN OUT

IN/OUT
EN BOOL I, Q, M, D, L Enable input

IN/OUT
ENO BOOL I, Q, M, D, L Enable output

DB13

EN
Start
Stop

Length

Run
ENO

Calls FB10 (using
instance DB13)

I 1.0
I 1.1

MW20

M2.1

FB10

Actual addresses,
the values of which
are copied into
instance data block
DB13 before
processing FB10. Formal parameters of the FB

The value of this parameter is
copied from DB13 into M 2.1 after
processing FB10.

Figure 20-3 Call FB from Box

Parameters

Program Control Instructions

20-7
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

20.3 Return

You can use the Return instruction to abandon blocks. You can abandon a
block conditionally. Return saves the RLO to the BR bit of the status word.

If a block is abandoned because of a conditional return, the signal state of the
RLO and the BR bit in the block to which program control returns is 1.

Table 20-3 Return Element

LAD Element Parameter Data Type Memory Area Description

RET None – – –

If the signal state of input I 0.0 is 1, the block is
abandoned. The BR bit of the status word then has the
same signal state as input I 0.0 (= 1)

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write x – – – x 0 1 1 0

I 0.0
RET

Conditional Return (Return if RLO = 1)

Figure 20-4 Return

Description

Program Control Instructions

20-8
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

20.4 Master Control Relay Instructions

The Master Control Relay (MCR, see also Section 20.5) is an American relay
ladder logic master switch for energizing and de-energizing power flow
(current path). A de-energized current path corresponds to an instruction
sequence that writes a zero value instead of the calculated value, or, to an
instruction sequence that leaves the existing memory value unchanged.
Operations triggered by the instructions shown in Table 20-4 are dependent
on the MCR.

The Output Coil and Midline Output instructions write a 0 to the memory if
the MCR is 0. The Set Coil and Reset Coil instructions leave the existing
value unchanged (see Table 20-5).

Table 20-4 Instructions Influenced by an MCR Zone

Element or Name in Box Instruction Name Section in This
Manual

#
Midline Output 8.5

Output Coil 8.4

S
Set Coil 8.8

R
Reset Coil 8.9

SR Set_Reset Flipflop 8.22

RS Reset_Set Flipflop 8.23

MOVE Assign a Value 14.1

Table 20-5 Operations Dependent on MCR and How They React to Its Signal State

Signal State of
MCR

Output Coil or
Midline Output

#

Sector Set or Reset

SR RS

S R

Assign a Value

MOVE

0

Writes 0

(Imitates a relay that falls to its
quiet state when voltage is
removed)

Does not write

(Imitates a latching relay that
remains in its current state
when voltage is removed)

Writes 0

(Imitates a component that, on
loss of voltage, produces a
value of 0)

1 Normal execution Normal execution Normal execution

Definition of
Master Control
Relay

Program Control Instructions

20-9
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

20.5 Master Control Relay Activate/Deactivate

With the instruction Activate Master Control Relay, you switch on the
MCR-dependency of subsequent commands. After entering this command,
you can program the MCR zones with these instructions (see Section 20.6).
When your program activates an MCR area, all MCR actions depend on the
content of the MCR stack (see Figure B-4).

Table 20-6 Master Control Relay Activate Element

LAD Element Parameter Data Type Memory Area Description

MCRA None – – Activates the MCR function

With the instruction Deactivate Master Control Relay, you switch off the
MCR-dependency of subsequent commands. After this instruction, you
cannot program any more MCR zones. When your program deactivates an
MCR area, the MCR is always energized irrespective of the entries in the
MCR stack.

Table 20-7 Master Control Relay Deactivate Element

LAD Element Parameter Data Type Memory Area Description

MCRD None – – Deactivates the MCR function

The MCR stack and the bit that controls its dependency (the MA bit) relate to
each level and have to be saved and fetched every time you switch to the
sequence level. They are preset at the beginning of every sequence level
(MCR entry bits 1 to 8 are set to 1, the MCR stack pointer is set to 0 and the
MA bit is set to 0).

The MCR stack is passed on from block to block and the MA bit is saved and
set to 0 every time a block is called. It is fetched back at the end of the block.

The MCR can be implemented in such a way that it optimizes the run time of
code-generating CPUs. The reason for this is that the dependency of the
MCR is not passed on by the block; it must be explicitly activated by an
MCR instruction. A code-generating CPU recognizes this instruction and
generates the additional code necessary for the evaluation of the MCR stack
until it recognizes an MCR instruction or reaches the end of the block. With
instructions outside the MCRA/MCRD range, there is no increase of the
runtime.

The instructions MCRA and MCRD must always be used in pairs within your
program.

MCR Activate

MCR Deactivate

Program Control Instructions

20-10
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

ÀÀÀÀÀÀ
ÀÀÀÀÀÀ
ÀÀÀÀÀÀ
ÀÀÀÀÀÀ
ÀÀÀÀÀÀ
ÀÀÀÀÀÀ

ÀÀÀÀÀÀ
ÀÀÀÀÀÀ
ÀÀÀÀÀÀ
ÀÀÀÀÀÀ
ÀÀÀÀÀÀ

ÀÀÀÀÀÀ
ÀÀÀÀÀÀ
ÀÀÀÀÀÀ
ÀÀÀÀÀÀ
ÀÀÀÀÀÀ
ÀÀÀÀÀÀ

ÀÀÀÀÀÀ
ÀÀÀÀÀÀ
ÀÀÀÀÀÀ

ÀÀÀÀÀÀÀ
ÀÀÀÀÀÀÀ
ÀÀÀÀÀÀÀ
ÀÀÀÀÀÀÀ
ÀÀÀÀÀÀÀ

OB1

MCRA

MCRD

MCRA

MCRA

MCRA

MCRD

BEU

BEU

Operations dependent on the MCR bit

Operations not dependent on the MCR bit

Call FBx

FBx FCy

Call FCy

BEU BEU is an STL instruction.
You will find more details in the Reference Manual /102/

Figure 20-5 Activating and Deactivating an MCR Area

The operations programmed between MCRA and MCRD depend on the
signal state of the MCR bit. Operations programmed outside an
MCRA-MCRD sequence do not depend on the signal state of the MCR bit. If
an MCRD instruction is missing, the operations programmed between the
instructions MCRA and BEU depend on the MCR bit. (BEU is an STL
instruction. You will find more information in Manual /232/.)

Program Control Instructions

20-11
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

The instruction ––(MCRA) activates the function MCR up to the next MCRD. The instructions
between ––(MCR<) and ––(MCR>) are processed dependent on the MA bit (here I 0.0):

� If the signal state of input I 0.0 = 1, the following conditions can exist:

– Output Q 4.0 is set to 1 if the signal state of input I 0.3 is 1.
– Output Q 4.0 remains unchanged if the signal state of input I 0.3 is 0.
– The signal state of input I 0.4 is assigned to output Q 4.1.

� If the signal state of input I 0.0 = 0, the following conditions exist:
– Output Q 4.0 remains unchanged regardless of the signal state of input I 0.3.
– Output Q 4.1 is 0 regardless of the signal state of input I 0.4.

S

I 0.3 Q 4.0

I 0.4 Q 4.1

.

.

.

MCRA

MCR<
I 0.0

MCR>

MCRD

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – – – – –

Figure 20-6 Master Control Relay (Activate and Deactivate)

You must program the dependency of the functions (FCs) and function blocks
(FBs) in the blocks by yourself. If this function or function block is called
from an MCRA/MCRD sequence, not all instructions within this sequence
are automatically dependent on the MCR bit. To achieve this, use the
instruction MCRA of the block called.

!
Warning

Risk of personal injury and danger to equipment:

Never use the instruction MCR as an EMERGENCY OFF or safety device
for personnel.

MCR is not a substitute for a hardwired master control relay.

Program Control Instructions

20-12
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

20.6 Master Control Relay On/Off

The Master Control Relay On (MCR<) instruction triggers an operation that
pushes the RLO to the MCR stack and opens an MCR zone. The instructions
shown in Table 20-4 are influenced by the RLO that is pushed to the RLO
stack when the MCR zone is opened. The MCR stack works like a LIFO
(Last In, First Out) buffer. Only eight entries are possible. If the stack is
already full, the Master Control Relay On instruction produces an MCR stack
fault (MCRF).

Table 20-8 Master Control Relay On Element

LAD Element Parameter Data Type Memory Area Description

MCR< None – – Opens an MCR zone

The Master Control Relay Off (MCR>) instruction closes the MCR zone that
was opened last. The instruction does this by removing the RLO entry from
the MCR stack. The RLO was pushed there by the Master Control Relay On
instruction. The entry released at the other end of the LIFO (Last In, First
Out) MCR stack is set to 1. If the stack is already empty, the Master Control
Relay Off instruction produces an MCR stack fault (MCRF).

Table 20-9 Master Control Relay Off Element

LAD Element Parameter Data Type Memory Area Description

MCR> None – –
Closes the MCR zone that was
opened last

The MCR is controlled by a stack which is one bit wide and eight entries
deep (see Figure 20-7). The MCR is activated until all eight entries in the
stack are equal to 1. The instruction ––(MCR<) copies the RLO to the MCR
stack. The instruction ––(MCR>) removes the last entry from the stack and
sets the released stack address to 1. If an error occurs – e.g. if more than
eight ––(MCR>) instructions follow one another, or you attempt to execute
the instruction ––(MCR>) when the stack is empty – this error activates the
MCRF error message. The monitoring of the MCR stack follows the stack
pointer (MSP: 0 = empty, 1 = one entry, 2 = two entries, ..., 8 = eight entries).

MCR On

MCR Off

Program Control Instructions

20-13
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

RLO

RLO

RLOMSP �

MA

MCRA MCRD1 0

� �

1

2

3

4

5

6

7

8

RLO Pushed bit
� �

� �

MSP = MCR stack pointer

MA = Bit for controlling MCR-dependency

Pushed bit 1

Figure 20-7 Master Control Relay Stack

The instructions ––(MCR<) and ––(MCR>) must always be used in pairs
within your program.

The instruction ––(MCR<) takes over the signal state of the RLO and copies
it to the MCR bit.

The instruction ––(MCR>) sets the MCR bit absolutely to 1. Because of this
characteristic, every other instruction between the instructions ––(MCRA)
and ––(MCRD) operates independent of the MCR bit (for information on
––(MCRA) and ––(MCRD), see above).

You can nest the instructions ––(MCR<) and ––(MCR>). The maximum
nesting depth is eight, i.e. you can write a maximum of eight ––(MCR<)
instructions one after the other before inserting an ––(MCR>) instruction.
You must program an equal number of ––(MCR<) and ––(MCR>)
instructions.

If the ––(MCR<) instructions are nested, the MCR bit of the lower nesting
level is formed. The ––(MCR<) instruction then links the current RLO with
the current MCR bit in accordance with the AND truth table.

When an ––(MCR>) instruction finishes a nesting level, it fetches the MCR
bit from the next higher level.

Nesting the
Instructions
(MCR<) and
(MCR>)

Program Control Instructions

20-14
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

When the MCRA instruction activates the MCR function, you can create up to eight nested MCR
zones. In the example, there are two MCR zones. The first MCR> instruction works together with the
second MCR< instruction. All instructions between the second set of MCR brackets (MCR<MCR>)
belong to the second MCR zone. The operations are executed as follows:

� If the signal state of input I 0.0 = 1, the signal state of input I 0.4 is assigned to output Q 4.1.
� If the signal state of input I 0.0 = 0, the signal state of output Q 4.1 is 0 regardless of

the signal state of input I 0.4. Output Q 4.0 remains unchanged regardless of the signal state
of input I 0.3.

� If the signal state of input I 0.0 and I 0.1 = 1, output Q 4.0 is set to 1 if the signal state
of input I 0.3 is 1 and output Q 4.1 = input I 0.4.

� If the signal state of input I 0.1 = 0, output Q 4.0 remains unchanged regardless of
the signal state of input I 0.3 and input I 0.0.

I 0.0

I 0.1

I 0.3 Q 4.0

Status Word Bits

 BR CC 1 CC 0 OV OS OR STA RLO FC
Write – – – – – 0 1 – 0

S

I 0.4

MCR>

MCRD

MCR <

MCRA

MCR>

Q 4.1

MCR <

Figure 20-8 Master Control Relay Off

Program Control Instructions

Alphabetical Listing of
Instructions A

Programming Examples B

Number Representation C

References D

Appendix

T-16
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

A-1
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Alphabetical Listing of Instructions

Section Description Page

A.1 Listing with International Names A-2

A.2 Listing with International Names and SIMATIC Equivalents A-5

A.3 Listing with SIMATIC Names A-9

A.4 Listing with SIMATIC Names and International Equivalents A-12

A.5 Listing with International Short Names and SIMATIC Short
Names

A-16

Chapter Overview

A

A-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

A.1 Listing with International Names

Table A-1 provides an alphabetical listing of instructions with international
full names. Next to each full name is its international short name and a
reference to the page on which the instruction is explained in this manual.

Table A-1 Ladder Logic Instructions Arranged Alphabetically by International Name, with Short Names

Full Name Short Name Page No.

Add Double Integer ADD_DI 11-3

Add Integer ADD_I 11-2

Add Real ADD_R 12-3

Address Negative Edge Detection NEG 8-22

Address Positive Edge Detection POS 8-21

Assign a Value MOVE 14-2

BCD to Double Integer BCD_DI 14-7

BCD to Integer BCD_I 14-4

Call FB from Box CALL_FB 20-4

Call FC from Box CALL_FC 20-4

Call FC SFC from Coil (without parameters) ––––(CALL) 20-2

Call System FB from Box CALL_SFB 20-4

Call System FC from Box CALL_SFC 20-4

Ceiling CEIL 14-17

Compare Double Integer (>, <, ==, <>, <=, >=) CMP>=D 13-3

Compare Integer (>, <, ==, <>, <=, >=) CMP>=I 13-2

Compare Real (>, <, ==, <>, <=, >=) CMP>=R 13-5

Divide Double Integer DIV_DI 11-9

Divide Integer DIV_I 11-8

Divide Real DIV_R 12-6

Double Integer to BCD DI_BCD 14-8

Double Integer to Real DI_R 14-9

Down Counter S_CD 10-7

Down Counter Coil ––––(CD) 8-13

Exception Bit BR Memory BR –––| |––– 19-3

Exception Bit Overflow OV –––| |––– 19-7

Exception Bit Overflow Stored OS –––| |––– 19-9

Exception Bit Unordered UO –––| |––– 19-6

Extended Pulse S5 Timer S_PEXT 9-7

Extended Pulse Timer Coil –––(SE) 8-15

Floor FLOOR 14-18

Integer to BCD I_BCD 14-5

Integer to Double Integer I_DI 14-6

Invert Power Flow –––| NOT |––– 8-7

Alphabetical Listing of Instructions

A-3
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Table A-1 Ladder Logic Instructions Arranged Alphabetically by International Name, with Short Names, cont.

Full Name Page No.Short Name

Jump-If-Not –––(JMPN) 18-5

Jump –––(JMP) 18-3

Master Control Relay Activate –––(MCRA) 20-9

Master Control Relay Deactivate –––(MCRD) 20-9

Master Control Relay Off –––(MCR>) 20-12

Master Control Relay On –––(MCR<) 20-12

Midline Output –––(#)––– 8-6

Multiply Double Integer MUL_DI 11-7

Multiply Integer MUL_I 11-6

Multiply Real MUL_R 12-5

Negate Real Number NEG_R 14-14

Negated Exception Bit BR Memory BR –––|/|––– 19-3

Negated Exception Bit Overflow OV –––|/|––– 19-7

Negated Exception Bit Overflow Stored OS –––|/|––– 19-9

Negated Exception Bit Unordered UO –––|/|––– 19-6

Negated Result Bit Equal 0 ==0 –––|/|––– 19-4

Negated Result Bit Greater Equal 0 >=0 –––|/|––– 19-4

Negated Result Bit Greater Than 0 >0 –––|/|––– 19-4

Negated Result Bit Less Equal 0 <=0 –––|/|––– 19-4

Negated Result Bit Less Than 0 <0 –––|/|––– 19-4

Negated Result Bit Not Equal 0 <>0 –––|/|––– 19-4

Negative RLO Edge Detection –––(N)––– 8-20

Normally Closed Contact (Address) –––|/|––– 8-4

Normally Open Contact (Address) –––| |––– 8-3

Off-Delay S5 Timer S_OFFDT 9-13

Off-Delay Timer Coil –––(SF) 8-18

On-Delay S5 Timer S_ODT 9-9

On-Delay Timer Coil –––(SD) 8-16

ONEs Complement Double Integer INV_DI 14-11

ONEs Complement Integer INV_I 14-10

Open Data Block: DB or DI –––(OPN) 17-2

Output Coil –––() 8-5

Positive RLO Edge Detection –––(P)––– 8-19

Pulse S5 Timer S_PULSE 9-5

Pulse Timer Coil –––(SP) 8-14

Reset Coil –––(R) 8-10

Reset-Set Flipflop RS 8-24

Result Bit Equal 0 ==0 –––| |––– 19-4

Result Bit Greater Equal 0 >=0 –––| |––– 19-4

Result Bit Greater Than 0 >0 –––| |––– 19-4

Alphabetical Listing of Instructions

A-4
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Table A-1 Ladder Logic Instructions Arranged Alphabetically by International Name, with Short Names, cont.

Full Name Page No.Short Name

Result Bit Less Equal 0 <=0 –––| |––– 19-4

Result Bit Less Than 0 <0 –––| |––– 19-4

Result Bit Not Equal 0 <>0 –––| |––– 19-4

Retentive On-Delay S5 Timer S_ODTS 9-11

Retentive On-Delay Timer Coil –––(SS) 8-17

Return –––(RET) 20-7

Return Fraction Double Integer MOD 11-10

Rotate Left Double Word ROL_DW 16-10

Rotate Right Double Word ROR_DW 16-12

Round to Double Integer ROUND 14-15

Save RLO to BR Memory –––(SAVE) 8-8

Set Coil –––(S) 8-9

Set Counter Value –––(SC) 8-11

Set-Reset Flipflop SR 8-23

Shift Left Double Word SHL_DW 16-4

Shift Left Word SHL_W 16-2

Shift Right Double Integer SHR_DI 16-9

Shift Right Double Word SHR_DW 16-6

Shift Right Integer SHR_I 16-7

Shift Right Word SHR_W 16-5

Subtract Double Integer SUB_DI 11-5

Subtract Integer SUB_I 11-4

Subtract Real SUB_R 12-4

Truncate Double Integer Part TRUNC 14-16

TWOs Complement Double Integer NEG_DI 14-13

TWOs Complement Integer NEG_I 14-12

Up Counter S_CU 10-5

Up Counter Coil –––(CU) 8-12

Up-Down Counter S_CUD 10-3

(Word) And Double Word WAND_DW 15-4

(Word) And Word WAND_W 15-3

(Word) Exclusive Or Double Word WXOR_DW 15-8

(Word) Exclusive Or Word WXOR_W 15-7

(Word) Or Double Word WOR_DW 15-6

(Word) Or Word WOR_W 15-5

Alphabetical Listing of Instructions

A-5
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

A.2 Listing with International Names and SIMATIC Equivalents

Table A-2 provides an alphabetical listing of instructions with international
full names. Next to each full name is its SIMATIC equivalent and a reference
to the page on which the instruction is explained in this manual.

Table A-2 Ladder Logic Instructions Arranged Alphabetically by International Name,
with SIMATIC Equivalents

International Name SIMATIC Name Page No.

Add Double Integer Ganze Zahlen addieren (32 Bit) 11-3

Add Integer Ganze Zahlen addieren (16 Bit) 11-2

Add Real Realzahlen addieren 12-3

Address Negative Edge Detection Signalflanke 1→0 abfragen 8-22

Address Positive Edge Detection Signalflanke 0→1 abfragen 8-21

Assign a Value Wert übertragen 14-2

BCD to Double Integer BCD-Zahl in Ganzzahl (32 Bit) wandeln 14-7

BCD to Integer BCD-Zahl in Ganzzahl (16 Bit) wandeln 14-4

Call FB from Box FB als Box aufrufen 20-4

Call FC from Box FC als Box aufrufen 20-4

Call FC SFC from Coil (without parameters) FC/SFC aufrufen ohne Parameter 20-2

Call System FB from Box System FB als Box aufrufen 20-4

Call System FC from Box System FC als Box aufrufen 20-4

Ceiling Aus Realzahl nächsthöhere Ganzzahl erzeugen 14-17

Compare Double Integer
(>, <, ==, <>, <=, >=)

Ganze Zahlen vergleichen (32 Bit)
13-3

Compare Integer (>, <, ==, <>, <=, >=) Ganze Zahlen vergleichen (16 Bit) 13-2

Compare Real (>, <, ==, <>, <=, >=) Realzahlen vergleichen 13-5

Divide Double Integer Ganze Zahlen dividieren (32 Bit) 11-9

Divide Integer Ganze Zahlen dividieren (16 Bit) 11-8

Divide Real Realzahlen dividieren 12-6

Double Integer to BCD Ganzzahl (32 Bit) in BCD-Zahl wandeln 14-8

Double Integer to Real Ganzzahl (32 Bit) in Realzahl wandeln 14-9

Down Counter Abwärts zählen 10-7

Down Counter Coil Abwärtszählen 8-13

Exception Bit BR Memory Störungsbit BR-Register 19-3

Exception Bit Overflow Störungsbit Überlauf 19-7

Exception Bit Overflow Stored Störungsbit Überlauf gespeichert 19-9

Exception Bit Unordered Störungsbit Ungültige Operation 19-6

Extended Pulse S5 Timer Zeit als verlängerten Impuls starten (SV) 9-7

Extended Pulse Timer Coil Zeit als verlängerten Impuls starten (SV) 8-15

Alphabetical Listing of Instructions

A-6
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Table A-2 Ladder Logic Instructions Arranged Alphabetically by International Name,
with SIMATIC Equivalents, cont.

International Name Page No.SIMATIC Name

Floor Aus Realzahl nächstniedere Ganzzahl
erzeugen

14-18

Integer to BCD Ganzzahl (16 Bit) in BCD-Zahl wandeln 14-5

Integer to Double Integer 16-bit-Ganzzahl in 32-bit-Ganzzahl wandeln 14-6

Invert Power Flow Verknüpfungsergebnis invertieren 8-7

Jump-If-Not Springen wenn 0 18-5

Jump Springen wenn 1 18-3

Master Control Relay Activate Master Control Relais Anfang 20-9

Master Control Relay Deactivate Master Control Relais Ende 20-9

Master Control Relay Off Master Control Relais ausschalten 20-12

Master Control Relay On Master Control Relais einschalten 20-12

Midline Output Konnektor 8-6

Multiply Double Integer Ganze Zahlen multiplizieren (32 Bit) 11-7

Multiply Integer Ganze Zahlen multiplizieren (16 Bit) 11-6

Multiply Real Realzahlen multiplizieren 12-5

Negate Real Number Vorzeichen einer Realzahl wechseln 14-14

Negated Exception Bit BR Memory Negiertes Störungsbit BR-Register 19-3

Negated Exception Bit Overflow Negiertes Störungsbit Überlauf 19-7

Negated Exception Bit Overflow Stored Negiertes Störungsbit Überlauf gespeichert 19-9

Negated Exception Bit Unordered Negiertes Störungsbit Ungültige Operation 19-6

Negated Result Bit Equal 0 Negiertes Ergebnisbit bei gleich 0 19-4

Negated Result Bit Greater Equal 0 Negiertes Ergebnisbit bei größer gleich 0 19-4

Negated Result Bit Greater Than 0 Negiertes Ergebnisbit bei größer als 0 19-4

Negated Result Bit Less Equal 0 Negiertes Ergebnisbit bei kleiner gleich 0 19-4

Negated Result Bit Less Than 0 Negiertes Ergebnisbit bei kleiner 0 19-4

Negated Result Bit Not Equal 0 Negiertes Ergebnisbit bei ungleich 0 19-4

Negative RLO Edge Detection Flanke 1→0 abfragen 8-20

Normally Closed Contact (Address) Öffnerkontakt 8-4

Normally Open Contact (Address) Schließerkontakt 8-3

Off-Delay S5 Timer Zeit als Ausschaltverzögerung starten (SA) 9-13

Off-Delay Timer Coil Zeit als Ausschaltverzögerung starten (SA) 8-18

On-Delay S5 Timer Zeit als Einschaltverzögerung starten (SE) 9-9

On-Delay Timer Coil Zeit als Einschaltverzögerung starten (SE) 8-16

ONEs Complement Double Integer 1er Komplement zu Ganzzahl (32 Bit)
erzeugen

14-11

ONEs Complement Integer 1er Komplement zu Ganzzahl (16 Bit)
erzeugen

14-10

Alphabetical Listing of Instructions

A-7
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Table A-2 Ladder Logic Instructions Arranged Alphabetically by International Name,
with SIMATIC Equivalents, cont.

International Name Page No.SIMATIC Name

Open Data Block: DB or DI Datenbaustein öffnen 17-2

Output Coil Relaisspule, Ausgang 8-5

Positive RLO Edge Detection Flanke 0→1 abfragen 8-19

Pulse S5 Timer Zeit als Impuls starten (SI) 9-5

Pulse Timer Coil Zeit als Impuls starten (SI) 8-14

Reset Coil Ausgang rücksetzen 8-10

Reset-Set Flipflop Flipflop rücksetzen setzen 8-24

Result Bit Equal 0 Ergebnisbit bei gleich 0 19-4

Result Bit Greater Equal 0 Ergebnisbit bei größer gleich 0 19-4

Result Bit Greater Than 0 Ergebnisbit bei größer als 0 19-4

Result Bit Less Equal 0 Ergebnisbit bei kleiner gleich 0 19-4

Result Bit Less Than 0 Ergebnisbit bei kleiner 0 19-4

Result Bit Not Equal 0 Ergebnisbit bei ungleich 0 19-4

Retentive On-Delay S5 Timer Zeit als speich. Einschaltverzögerung starten
(SS)

9-11

Retentive On-Delay Timer Coil Zeit als speich. Einschaltverzögerung starten
(SS)

8-17

Return Springe zurück 20-7

Return Fraction Double Integer Divisionsrest gewinnen (32 Bit) 11-10

Rotate Left Double Word 32 Bit linksrotieren 16-10

Rotate Right Double Word 32 Bit rechtsrotieren 16-12

Round to Double Integer Zahl runden 14-15

Save RLO to BR Memory Verknüpfungsergebnis ins BR-Register laden 8-8

Set Coil Ausgang setzen 8-9

Set Counter Value Zähleranfangswert setzen 8-11

Set-Reset Flipflop Flipflop setzen rücksetzen 8-23

Shift Left Double Word 32 Bit links schieben 16-4

Shift Left Word 16 Bit links schieben 16-2

Shift Right Double Integer Ganzzahl (32 Bit) rechtsschieben 16-9

Shift Right Double Word 32 Bit rechts schieben 16-6

Shift Right Integer Ganzzahl (16 Bit) rechtsschieben 16-7

Shift Right Word 16 Bit rechts schieben 16-5

Subtract Double Integer Ganze Zahlen subtrahieren (32 Bit) 11-5

Subtract Integer Ganze Zahlen subtrahieren (16 Bit) 11-4

Subtract Real Realzahlen subtrahieren 12-4

Truncate Double Integer Part Ganze Zahl erzeugen 14-16

Alphabetical Listing of Instructions

A-8
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Table A-2 Ladder Logic Instructions Arranged Alphabetically by International Name,
with SIMATIC Equivalents, cont.

International Name Page No.SIMATIC Name

TWOs Complement Double Integer 2er Komplement zu Ganzzahl (32 Bit)
erzeugen

14-13

TWOs Complement Integer 2er Komplement zu Ganzzahl (16 Bit)
erzeugen

14-12

Up Counter Aufwärts zählen 10-5

Up Counter Coil Aufwärtszählen 8-12

Up-Down Counter Aufwärts/abwärts zählen 10-3

(Word) And Double Word 32 Bit UND verknüpfen 15-4

(Word) And Word 16 Bit UND verknüpfen 15-3

(Word) Exclusive Or Double Word 32 Bit Exclusiv ODER verknüpfen 15-8

(Word) Exclusive Or Word 16 Bit Exclusiv ODER verknüpfen 15-7

(Word) Or Double Word 32 Bit ODER verknüpfen 15-6

(Word) Or Word 16 Bit ODER verknüpfen 15-5

Alphabetical Listing of Instructions

A-9
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

A.3 Listing with SIMATIC Names

Table A-3 provides an alphabetical listing of instructions with SIMATIC full
names. Next to each full name is its international short name and a reference
to the page on which the instruction is explained in this manual.

Table A-3 Ladder Logic Instructions Arranged Alphabetically by SIMATIC Name, with Short Names

SIMATIC Name Short Name Page No.

1er Komplement zu Ganzzahl (16 Bit) erzeugen INV_I 14-10

1er Komplement zu Ganzzahl (32 Bit) erzeugen INV_DI 14-11

2er Komplement zu Ganzzahl (16 Bit) erzeugen NEG_I 14-12

2er Komplement zu Ganzzahl (32 Bit) erzeugen NEG_DI 14-13

16 Bit Exclusiv ODER verknüpfen WXOR_W 15-7

16-bit-Ganzzahl in 32-bit-Ganzzahl wandeln I_DI 14-6

Ganzzahl (16 Bit) in BCD-Zahl wandeln I_BCD 14-5

Ganzzahl (16 Bit) rechtsschieben SHR_I 16-7

16 Bit links schieben SHL_W 16-2

16 Bit ODER verknüpfen WOR_W 15-5

16 Bit rechts schieben SHR_W 16-5

16 Bit UND verknüpfen WAND_W 15-3

32 Bit Exclusiv ODER verknüpfen WXOR_DW 15-8

Ganzzahl (32 Bit) in BCD-Zahl wandeln DI_BCD 14-8

Ganzzahl (32 Bit) in Realzahl wandeln DI_R 14-9

Ganzzahl (32 Bit) rechtsschieben SHR_DI 16-9

32 Bit linksrotieren ROL_DW 16-10

32 Bit links schieben SHL_DW 16-4

32 Bit ODER verknüpfen WOR_DW 15-6

32 Bit rechtsrotieren ROR_DW 16-12

32 Bit rechts schieben SHR_DW 16-4

32 Bit UND verknüpfen WAND_DW 15-4

Abwärts zählen S_CD 10-7

Abwärtszählen ––––(CD) 8-13

Aufwärts/abwärts zählen S_CUD 10-3

Aufwärts zählen S_CU 10-5

Aufwärtszählen –––(CU) 8-12

Ausgang rücksetzen –––(R) 8-10

Ausgang setzen –––(S) 8-9

Aus Realzahl nächsthöhere Ganzzahl erzeugen CEIL 14-17

Aus Realzahl nächstniedere Ganzzahl erzeugen FLOOR 14-18

BCD-Zahl in Ganzzahl (16 Bit) wandeln BCD_I 14-4

BCD-Zahl in Ganzzahl (32 Bit) wandeln BCD_DI 14-7

Datenbaustein öffnen –––(OPN) 17-2

Alphabetical Listing of Instructions

A-10
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Table A-3 Ladder Logic Instructions Arranged Alphabetically by SIMATIC Name, with Short Names, cont.

SIMATIC Name Page No.Short Name

Divisionsrest gewinnen (32 Bit) MOD 11-10

Ergebnisbit bei gleich 0 ==0 –––| |––– 19-4

Ergebnisbit bei größer als 0 >0 –––| |––– 19-4

Ergebnisbit bei größer gleich 0 >=0 –––| |––– 19-4

Ergebnisbit bei kleiner 0 <0 –––| |––– 19-4

Ergebnisbit bei kleiner gleich 0 <=0 –––| |––– 19-4

Ergebnisbit bei ungleich 0 <>0 –––| |––– 19-4

FB als Box aufrufen CALL_FB 20-4

FC als Box aufrufen CALL_FC 20-4

FC/SFC aufrufen ohne Parameter ––––(CALL) 20-2

Flanke 0→1 abfragen –––(P)––– 8-19

Flanke 1→0 abfragen –––(N)––– 8-20

Flipflop rücksetzen setzen RS 8-24

Flipflop setzen rücksetzen SR 8-23

Ganze Zahlen addieren (16 Bit) ADD_I 11-2

Ganze Zahlen addieren (32 Bit) ADD_DI 11-3

Ganze Zahlen dividieren (16 Bit) DIV_I 11-8

Ganze Zahlen dividieren (32 Bit) DIV_DI 11-9

Ganze Zahlen multiplizieren (16 Bit) MUL_I 11-6

Ganze Zahlen multiplizieren (32 Bit) MUL_DI 11-7

Ganze Zahlen subtrahieren (16 Bit) SUB_I 11-4

Ganze Zahlen subtrahieren (32 Bit) SUB_DI 11-5

Ganze Zahlen vergleichen (16 Bit) CMP_I_>= 13-2

Ganze Zahlen vergleichen (32 Bit) CMP_D_>= 13-3

Ganze Zahl erzeugen TRUNC 14-16

Konnektor –––(#)––– 8-6

Master Control Relais Anfang –––(MCRA) 20-9

Master Control Relais ausschalten –––(MCR>) 20-12

Master Control Relais einschalten –––(MCR<) 20-12

Master Control Relais Ende –––(MCRD) 20-9

Negiertes Ergebnisbit bei gleich 0 ==0 –––|/|––– 19-4

Negiertes Ergebnisbit bei größer als 0 >0 –––|/|––– 19-4

Negiertes Ergebnisbit bei größer gleich 0 >=0 –––|/|––– 19-4

Negiertes Ergebnisbit bei kleiner gleich 0 <=0 –––|/|––– 19-4

Negiertes Ergebnisbit bei kleiner 0 <0 –––|/|––– 19-4

Negiertes Ergebnisbit bei ungleich 0 <>0 –––|/|––– 19-4

Negiertes Störungsbit BR-Register BR –––|/|––– 19-3

Negiertes Störungsbit Überlauf OV –––|/|––– 19-7

Negiertes Störungsbit Überlauf gespeichert OS –––|/|––– 19-9

Negiertes Störungsbit Ungültige Operation UO –––|/|––– 19-6

Alphabetical Listing of Instructions

A-11
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Table A-3 Ladder Logic Instructions Arranged Alphabetically by SIMATIC Name, with Short Names, cont.

SIMATIC Name Page No.Short Name

Öffnerkontakt –––|/|––– 8-4

Realzahlen addieren ADD_R 12-3

Realzahlen dividieren DIV_R 12-6

Realzahlen multiplizieren MUL_R 12-5

Realzahlen subtrahieren SUB_R 12-4

Realzahlen vergleichen CMP_R_>= 13-5

Relaisspule, Ausgang –––() 8-5

Schließerkontakt –––| |––– 8-3

Signalflanke 0→1 abfragen POS 8-21

Signalflanke 1→0 abfragen NEG 8-22

Springen wenn 0 –––(JMPN) 18-5

Springen wenn 1 –––(JMP) 18-3

Springe zurück –––(RET) 20-7

Störungsbit BR-Register BR –––| |––– 19-3

Störungsbit Überlauf OV –––| |––– 19-7

Störungsbit Überlauf gespeichert OS –––| |––– 19-9

Störungsbit Ungültige Operation UO –––| |––– 19-6

System FB als Box aufrufen CALL_SFB 20-4

System FC als Box aufrufen CALL_SFC 20-4

Verknüpfungsergebnis ins BR-Register laden –––(SAVE) 8-8

Verknüpfungsergebnis invertieren –––| NOT |––– 8-7

Vorzeichen einer Realzahl wechseln NEG_R 14-14

Wert übertragen MOVE 14-2

Zahl runden ROUND 14-15

Zähleranfangswert setzen –––(SC) 8-11

Zeit als Ausschaltverzögerung starten (SA) S_OFFDT 9-13

Zeit als Ausschaltverzögerung starten (SA) –––(SF) 8-18

Zeit als Einschaltverzögerung starten (SE) S_ODT 9-9

Zeit als Einschaltverzögerung starten (SE) –––(SD) 8-16

Zeit als Impuls starten (SI) S_PULSE 9-5

Zeit als Impuls starten (SI) –––(SP) 8-14

Zeit als speich. Einschaltverzögerung starten (SS) S_ODTS 9-11

Zeit als speich. Einschaltverzögerung starten (SS) –––(SS) 8-17

Zeit als verlängerten Impuls starten (SV) S_PEXT 9-7

Zeit als verlängerten Impuls starten (SV) –––(SE) 8-15

Alphabetical Listing of Instructions

A-12
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

A.4 Listing with SIMATIC Names and International Equivalents

Table A-4 provides an alphabetical listing of instructions with SIMATIC full
names. Next to each full name is its international equivalent and a reference
to the page on which the instruction is explained in this manual.

Table A-4 Ladder Logic Instructions Arranged Alphabetically by SIMATIC Name, with International
Equivalents

SIMATIC Name International Name Page No.

1er Komplement zu Ganzzahl (16 Bit)
erzeugen

ONEs Complement Integer
14-10

1er Komplement zu Ganzzahl (32 Bit)
erzeugen

ONEs Complement Double Integer
14-11

2er Komplement zu Ganzzahl (16 Bit)
erzeugen

TWOs Complement Integer
14-12

2er Komplement zu Ganzzahl (32 Bit)
erzeugen

TWOs Complement Double Integer
14-13

16 Bit Exclusiv ODER verknüpfen (Word) Exclusive Or Word 15-7

16-bit-Ganzzahl in 32-bit-Ganzzahl wandeln Integer to Double Integer 14-6

Ganzzahl (16 Bit) in BCD-Zahl wandeln Integer to BCD 14-5

Ganzzahl (16 Bit) rechtsschieben Shift Right Integer 16-7

16 Bit links schieben Shift Left Word 16-2

16 Bit ODER verknüpfen (Word) Or Word 15-5

16 Bit rechts schieben Shift Right Word 16-5

16 Bit UND verknüpfen (Word) And Word 15-3

32 Bit Exclusiv ODER verknüpfen (Word) Exclusive Or Double Word 15-8

Ganzzahl (32 Bit) in BCD-Zahl wandeln Double Integer to BCD 14-8

Ganzzahl (32 Bit) in Realzahl wandeln Double Integer to Real 14-9

Ganzzahl (32 Bit) rechtsschieben Shift Right Double Integer 16-9

32 Bit linksrotieren Rotate Left Double Word 16-10

32 Bit links schieben Shift Left Double Word 16-4

32 Bit ODER verknüpfen (Word) Or Double Word 15-6

32 Bit rechtsrotieren Rotate Right Double Word 16-12

32 Bit rechts schieben Shift Right Double Word 16-4

32 Bit UND verknüpfen (Word) And Double Word 15-4

Abwärts zählen Down Counter 10-7

Abwärtszählen Down Counter Coil 8-13

Aufwärts/abwärts zählen Up-Down Counter 10-3

Aufwärts zählen Up Counter 10-5

Aufwärtszählen Up Counter Coil 8-12

Ausgang rücksetzen Reset Coil 8-10

Ausgang setzen Set Coil 8-9

Alphabetical Listing of Instructions

A-13
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Table A-4 Ladder Logic Instructions Arranged Alphabetically by SIMATIC Name, with International
Equivalents, cont.

SIMATIC Name Page No.International Name

Aus Realzahl nächsthöhere Ganzzahl erzeugenCeiling 14-17

Aus Realzahl nächstniedere Ganzzahl
erzeugen

Floor
14-18

BCD-Zahl in Ganzzahl (16 Bit) wandeln BCD to Integer 14-4

BCD-Zahl in Ganzzahl (32 Bit) wandeln BCD to Double Integer 14-7

Datenbaustein öffnen Open Data Block: DB or DI 17-2

Divisionsrest gewinnen (32 Bit) Return Fraction Double Integer 11-10

Ergebnisbit bei gleich 0 Result Bit Equal 0 19-4

Ergebnisbit bei größer als 0 Result Bit Greater Than 0 19-4

Ergebnisbit bei größer gleich 0 Result Bit Greater Equal 0 19-4

Ergebnisbit bei kleiner 0 Result Bit Less Than 0 19-4

Ergebnisbit bei kleiner gleich 0 Result Bit Less Equal 0 19-4

Ergebnisbit bei ungleich 0 Result Bit Not Equal 0 19-4

FB als Box aufrufen Call FB from Box 20-4

FC als Box aufrufen Call FC from Box 20-4

FC/SFC aufrufen ohne Parameter Call FC SFC from Coil (without parameters) 20-2

Flanke 0→1 abfragen Positive RLO Edge Detection 8-19

Flanke 1→0 abfragen Negative RLO Edge Detection 8-20

Flipflop rücksetzen setzen Reset-Set Flipflop 8-24

Flipflop setzen rücksetzen Set-Reset Flipflop 8-23

Ganze Zahlen addieren (16 Bit) Add Integer 11-2

Ganze Zahlen addieren (32 Bit) Add Double Integer 11-3

Ganze Zahlen dividieren (16 Bit) Divide Integer 11-8

Ganze Zahlen dividieren (32 Bit) Divide Double Integer 11-9

Ganze Zahlen multiplizieren (16 Bit) Multiply Integer 11-6

Ganze Zahlen multiplizieren (32 Bit) Multiply Double Integer 11-7

Ganze Zahlen subtrahieren (16 Bit) Subtract Integer 11-4

Ganze Zahlen subtrahieren (32 Bit) Subtract Double Integer 11-5

Ganze Zahlen vergleichen (16 Bit) Compare Integer (>, <, ==, <>, <=, >=) 13-2

Ganze Zahlen vergleichen (32 Bit) Compare Double Integer
(>, <, ==, <>, <=, >=)

13-3

Ganze Zahl erzeugen Truncate Double Integer Part 14-16

Konnektor Midline Output 8-6

Master Control Relais Anfang Master Control Relay Activate 20-9

Master Control Relais ausschalten Master Control Relay Off 20-12

Master Control Relais einschalten Master Control Relay On 20-12

Master Control Relais Ende Master Control Relay Deactivate 20-9

Alphabetical Listing of Instructions

A-14
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Table A-4 Ladder Logic Instructions Arranged Alphabetically by SIMATIC Name, with International
Equivalents, cont.

SIMATIC Name Page No.International Name

Negiertes Ergebnisbit bei gleich 0 Negated Result Bit Equal 0 19-4

Negiertes Ergebnisbit bei größer als 0 Negated Result Bit Greater Than 0 19-4

Negiertes Ergebnisbit bei größer gleich 0 Negated Result Bit Greater Eqaul 0 19-4

Negiertes Ergebnisbit bei kleiner gleich 0 Negated Result Bit Less Equal 0 19-4

Negiertes Ergebnisbit bei kleiner 0 Negated Result Bit Less Than 0 19-4

Negiertes Ergebnisbit bei ungleich 0 Negated Result Bit Not Equal 0 19-4

Negiertes Störungsbit BR-Register Negated Exception Bit BR Memory 19-3

Negiertes Störungsbit Überlauf Negated Exception Bit Overflow 19-7

Negiertes Störungsbit Überlauf gespeichert Negated Exception Bit Overflow Stored 19-9

Negiertes Störungsbit Ungültige Operation Negated Exception Bit Unordered 19-6

Öffnerkontakt Normally Closed Contact (Address) 8-4

Realzahlen addieren Add Real 12-3

Realzahlen dividieren Divide Real 12-6

Realzahlen multiplizieren Multiply Real 12-5

Realzahlen subtrahieren Subtract Real 12-4

Realzahlen vergleichen Compare Real (>, <, ==, <>, <=, >=) 13-5

Relaisspule, Ausgang Output Coil 8-5

Schließerkontakt Normally Open Contact (Address) 8-3

Signalflanke 0→1 abfragen Address Positive Edge Detection 8-21

Signalflanke 1→0 abfragen Address Negative Edge Detection 8-22

Springe wenn 0 Jump-If-Not 18-5

Springen wenn 1 Jump 18-3

Springe zurück Return 20-7

Störungsbit BR-Register Exception Bit BR Memory 19-3

Störungsbit Überlauf Exception Bit Overflow 19-7

Störungsbit Überlauf gespeichert Exception Bit Overflow Stored 19-9

Störungsbit Ungültige Operation Exception Bit Unordered 19-6

System FB als Box aufrufen Call System FB from Box 20-4

System FC als Box aufrufen Call System FC from Box 20-4

Verknüpfungsergebnis ins BR-Register laden Save RLO to BR Memory 8-8

Verknüpfungsergebnis invertieren Invert Power Flow 8-7

Vorzeichen einer Realzahl wechseln Negate Real Number 14-14

Wert übertragen Assign a Value 14-2

Zahl runden Round to Double Integer 14-15

Zähleranfangswert setzen Set Counter Value 8-11

Zeit als Ausschaltverzögerung starten (SA) Off-Delay S5 Timer 9-13

Alphabetical Listing of Instructions

A-15
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Table A-4 Ladder Logic Instructions Arranged Alphabetically by SIMATIC Name, with International
Equivalents, cont.

SIMATIC Name Page No.International Name

Zeit als Ausschaltverzögerung starten (SA) Off-Delay Timer Coil 8-18

Zeit als Einschaltverzögerung starten (SE) On-Delay S5 Timer 9-9

Zeit als Einschaltverzögerung starten (SE) On-Delay Timer Coil 8-16

Zeit als Impuls starten (SI) Pulse S5 Timer 9-5

Zeit als Impuls starten (SI) Pulse Timer Coil 8-14

Zeit als speich. Einschaltverzögerung starten
(SS)

Retentive On-Delay S5 Timer
9-11

Zeit als speich. Einschaltverzögerung starten
(SS)

Retentive On-Delay Timer Coil
8-17

Zeit als verlängerten Impuls starten (SV) Extended Pulse S5 Timer 9-7

Zeit als verlängerten Impuls starten (SV) Extended Pulse Timer Coil 8-15

Alphabetical Listing of Instructions

A-16
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

A.5 Listing with International Short Names and SIMATIC Short Names

Table A-5 provides a list of instructions which have both international and
SIMATIC short names. The table lists these instructions alphabetically
according to their international full names.

Table A-5 Ladder Logic Instructions Listed in This Manual with International Short Names and SIMATIC Short
Names

International Name International Short Name SIMATIC Short Name Page No.

Down Counter S_CD Z_RUECK 10-7

Down Counter Coil ––––(CD) ––––(ZR) 8-13

Exception Bit BR Memory BR –––| |––– BIE –––| |––– 19-3

Extended Pulse S5 Timer S_PEXT S_VIMP 9-7

Extended Pulse Timer Coil –––(SE) –––(SV) 8-15

Off-Delay S5 Timer S_OFFDT S_AVERZ 9-13

Off-Delay Timer Coil –––(SF) –––(SA) 8-18

On-Delay S5 Timer S_ODT S_EVERZ 9-9

On-Delay Timer Coil –––(SD) –––(SE) 8-16

Open Data Block: DB or DI –––(OPN) –––(AUF) 17-2

Pulse S5 Timer S_PULSE S_IMPULS 9-5

Pulse Timer Coil –––(SP) –––(SI) 8-14

Retentive On-Delay S5 Timer S_ODTS S_SEVERZ 9-11

Retentive On-Delay Timer Coil –––(SS) –––(SS) 8-17

Set Counter Value –––(SC) –––(SZ) 8-11

Up Counter S_CU Z_VORW 10-5

Up Counter Coil –––(CU) –––(ZV) 8-12

Up-Down Counter S_CUD ZAEHLER 10-3

Alphabetical Listing of Instructions

B-1
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Programming Examples

Section Description Page

B.1 Overview B-2

B.2 Bit Logic Instructions B-3

B.3 Timer Instructions B-7

B.4 Counter and Comparison Instructions B-11

B.5 Integer Math Instructions B-13

B.6 Word Logic Instructions B-14

Chapter Overview

B

B-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

B.1 Overview

Each ladder logic instruction described in this manual triggers a specific
operation. When you combine these instructions into a program, you can
accomplish a wide variety of automation tasks. This chapter provides the
following examples of practical applications of the ladder logic instructions:

� Controlling a conveyor belt using bit logic instructions

� Detecting direction of movement on a conveyor belt using bit logic
instructions

� Generating a clock pulse using timer instructions

� Keeping track of storage space using counter and comparison instructions

� Solving a problem using integer math instructions

� Setting the length of time for heating an oven

The examples in this chapter use the following instructions:

� Add Integer (ADD_I)

� Assign a Value (MOVE)

� Compare Integer (CMP_I>=)

� Compare Integer (CMP_I<=)

� Divide Integer (DIV_I)

� Down Counter Coil ––(CD)

� Extended Pulse Timer Coil ––(SE)––

� Jump-If-Not ––(JMPN)––

� Multiply Integer (MUL_I)

� Normally Closed Contact ––| / |––

� Normally Open Contact ––| |––

� Output Coil ––()

� Positive RLO Edge Detection ––(P)––

� Reset Coil ––(R)

� Return ––(RET)

� Set Coil ––(S)

� Up Counter Coil ––(CU)

� (Word) And Word (WAND_W)

� (Word) Or Word (WOR_W)

Practical
Applications

Instructions Used

Programming Examples

B-3
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

B.2 Bit Logic Instructions

Figure B-1 shows a conveyor belt that can be activated electrically. There are
two push button switches at the beginning of the belt: S1 for START and S2
for STOP. There are also two push button switches at the end of the belt: S3
for START and S4 for STOP. It it possible to start or stop the belt from either
end. Also, sensor S5 stops the belt when an item on the belt reaches the end.

You can write a program to control the conveyor belt shown in Figure B-1
using symbols that represent the various components of the conveyor system.
If you choose this method, you need to make a symbol table to correlate the
symbols you choose with absolute values (see Table B-1). You define the
symbols in the symbol table (see /231/ User Manual).

Table B-1 Elements of Symbolic Programming for Conveyor Belt System

System Component
Absolute
Address

Symbol Symbol Table

Push Button Start Switch I 1.1 S1 I 1.1 S1

Push Button Stop Switch I 1.2 S2 I 1.2 S2

Push Button Start Switch I 1.3 S3 I 1.3 S3

Push Button Stop Switch I 1.4 S4 I 1.4 S4

Sensor I 1.5 S5 I 1.5 S5

Motor Q 4.0 MOTOR_ON Q 4.0 MOTOR_ON

MOTOR_ON

S1
S2

� Start
� Stop

S3
S4

� Start
� Stop

Sensor S5

Figure B-1 Conveyor Belt System

Controlling a
Conveyor Belt

Symbolic
Programming

Programming Examples

B-4
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

You can write a program to control the conveyor belt shown in Figure B-1
using absolute values that represent the different components of the conveyor
system (see Table B-2). Figure B-2 shows a ladder logic program to control
the conveyor belt.

Table B-2 Elements of Absolute Programming for Conveyor Belt System

System Component Absolute Address

Push Button Start Switch I 1.1

Push Button Stop Switch I 1.2

Push Button Start Switch I 1.3

Push Button Stop Switch I 1.4

Sensor I 1.5

Motor Q 4.0

I 1.1 Q 4.0

Push Button Start Switch
“S1”“S1”

S

Motor
“MOTOR_ON”

Push Button Start Switch

I 1.1

“S3”
I 1.3

Network 1: Pressing either start switch turns the motor on.

Network 2: Pressing either stop switch or opening the normally closed contact at the end of the belt
turns the motor off.

Q 4.0

Push Button Stop Switch
“S2”

R

Motor
“MOTOR_ON”

Push Button Stop Switch

I 1.2

“S4”
I 1.4

Sensor
“S5”
I 1.5

Figure B-2 Ladder Logic for Controlling a Conveyor Belt

Absolute
Programming

Programming Examples

B-5
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Figure B-3 shows a conveyor belt that is equipped with two photoelectric
barriers (PEB1 and PEB2) that are designed to detect the direction in which a
package is moving on the belt. Each photoelectric light barrier functions like
a normally open contact (see Section 8.2).

You can write a program to activate a direction display for the conveyor belt
system shown in Figure B-3 using symbols that represent the various
components of the conveyor system, including the photoelectric barriers that
detect direction. If you choose this method, you need to make a symbol table
to correlate the symbols you choose with absolute values (see Table B-3).
You define the symbols in the symbol table (see the User Manual /231/).

Table B-3 Elements of Symbolic Programming for Detecting Direction

System Component
Absolute
Address

Symbol Symbol Table

Photo electric barrier 1 I 0.0 PEB1 I 0.0 PEB1

Photo electric barrier 2 I 0.1 PEB2 I 0.1 PEB2

Display for movement to right Q 4.0 RIGHT Q 4.0 RIGHT

Display for movement to left Q 4.1 LEFT Q 4.1 LEFT

Pulse memory bit 1 M 0.0 PMB1 M 0.0 PMB1

Pulse memory bit 2 M 0.1 PMB2 M 0.1 PMB2

You can write a program to activate the direction display for the conveyor
belt shown in Figure B-3 using absolute values that represent the
photoelectric barriers that detect direction (see Table B-4). Figure B-4 shows
a ladder logic program to control the direction display for the conveyor belt.

PEB1PEB2 Q 4.1Q 4.0

Figure B-3 Conveyor Belt System with Photoelectric Light Barriers for Detecting Direction

Detecting the
Direction of a
Conveyor Belt

Symbolic
Programming

Absolute
Programming

Programming Examples

B-6
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Table B-4 Elements of Absolute Programming for Detecting Direction

System Component Absolute Address

Photo electric barrier 1 I 0.0

Photo electric barrier 2 I 0.1

Display for movement to right Q 4.0

Display for movement to left Q 4.1

Pulse memory bit 1 M 0.0

Pulse memory bit 2 M 0.1

Q 4.1

Photoelectric barrier 1
“PEB1”

S

Display for movement to left
“LEFT”

I 0.0

Network 1: If there is a transition in signal state from 0 to 1 (positive edge) at input I 0.0 and, at the
same time, the signal state at input I 0.1 is 0, then the package on the belt is moving to the left.

Pulse memory bit 1 Photoelectric barrier 2

P

“PMB1” “PEB2”
I 0.1M 0.0

Network 2: If there is a transition in signal state from 0 to 1 (positive edge) at input I 0.1 and, at the
same time, the signal state at input I 0.0 is 0, then the package on the belt is moving to the right. If one
of the photoelectric light barriers is broken, this means that there is a package between the barriers.

Q 4.0

Photoelectric barrier 2
“PEB2”

S

Display for movement to right
“RIGHT”

I 0.1

Pulse memory bit 2 Photoelectric barrier 1

P

“PMB2” “PEB1”
I 0.0M 0.1

Network 3: If neither photoelectric barrier is broken, then there is no package between the barriers.
The direction pointer shuts off.

Q 4.0

Photoelectric barrier 1
“PEB1”

R

Display for movement to right
“RIGHT”

I 0.0

Photoelectric barrier 2
“PEB2”
I 0.1

Display for movement to left

Q 4.1

R

“LEFT”

Figure B-4 Ladder Logic for Detecting the Direction of a Conveyor Belt

Programming Examples

B-7
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

B.3 Timer Instructions

You can use a clock pulse generator or flasher relay when you need to
produce a signal that repeats periodically. A clock pulse generator is common
in a signalling system that controls the flashing of indicator lamps.

When you use the S7-300, you can implement the clock pulse generator
function by using time-driven processing in special organization blocks. The
example shown in the following ladder logic program, however, illustrates
the use of timer functions to generate a clock pulse.

The sample program in Figure B-5 shows how to implement a freewheeling
clock pulse generator by using a timer (pulse duty factor 1:1). The frequency
is divided into the values listed in Table B-5.

Clock Pulse
Generator

Programming Examples

B-8
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

MW100

M0.2 T 1

SE

S5T#250MS

M0.2

Network 1: If the signal state of timer T 1 is 0, load the time value 250 ms into T 1 and start T 1 as
an extended-pulse timer.

Network 4: When the timer T1 expires, the memory word 100 is incremented by “1”.

ADD_I

IN1

ENOEN

IN2

OUTMW100

1

MW100

Network 5: The MOVE instruction allows you to output the different clock frequencies at
outputs Q12.0 through Q 13.7.

MOVE

IN

ENOEN

OUT AW12

M001

T 1

Network 2: The state of the timer is saved temporarily in an auxiliary memory marker.

N001

JMP

Network 3: If the signal state of timer T is “1”, jump to jump label N001.

M0.2

Figure B-5 Ladder Logic to Generate a Clock Pulse

Programming Examples

B-9
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

A signal check of timer T 1 produces the result of logic operation (RLO, see
Section 6.2) shown in Figure B-6.

0

1

250 ms

Figure B-6 RLO for Negated T 1 Contact in the Clock Pulse Timer Example

As soon as the time runs out, the timer is restarted. Because of this, the signal
check made by ––| / |–– T 1 produces a signal state of 1 only briefly.

Figure B-7 shows what the negated (inverted) RLO bit looks like.

0

1

250 ms

Figure B-7 Negated RLO Bit of Timer T 1 in the Clock Pulse Timer Example

Every 250 ms the RLO bit is 0. The jump is ignored and the contents of
memory word MW100 is incremented by 1.

Table B-5 lists the frequencies that you can achieve from the individual bits
of memory bytes MB101 and MB100. Network 5 in the ladder logic diagram
shown in Figure B-5 illustrates how the MOVE instruction allows you to see
the different clock frequencies on outputs Q12.0 through Q13.7.

Table B-5 Frequencies for Clock Pulse Timer Example

Bits of
MB101/MB100

Frequency in Hz Duration

M 101.0 2.0 0.5 s (250 ms on/250 ms off)

M 101.1 1.0 1 s (0.5 s on/0.5 s off)

M 101.2 0.5 2 s (1 s on/1 s off

M 101.3 0.25 4 s (2 s on/2 s off)

M 101.4 0.125 8 s (4 s on/4 s off)

M 101.5 0.0625 16 s (8 s on/8 s off)

M 101.6 0.03125 32 s (16 s on/16 s off)

M 101.7 0.015625 64 s (32 s on/32 s off)

M 100.0 0.0078125 128 s (64 s on/64 s off)

M 100.1 0.0039062 256 s (128 s on/128 s off)

M 100.2 0.0019531 512 s (256 s on/256 s off)

Achieving a
Specific
Frequency

Programming Examples

B-10
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Table B-5 Frequencies for Clock Pulse Timer Example

Bits of
MB101/MB100

DurationFrequency in Hz

M 100.3 0.0009765 1024 s (512 s on/512 s off)

M 100.4 0.0004882 2048 s (1024 s on/1024 s off)

M 100.5 0.0002441 4096 s (2048 s on/2048 s off)

M 100.6 0.000122 8192 s (4096 s on/4096 s off)

M 100.7 0.000061 16384 s (8192 s on/8192 s off)

Table B-6 lists the signal states of the bits of memory byte MB101.
Figure B-8 shows the signal state of memory bit M101.1.

Table B-6 Signal States of the Bits of Memory Byte MB101

Scan Signal State of Bits of Memory Byte MB101 Time
Value

Cycle 7 6 5 4 3 2 1 0
Value
in ms

0 0 0 0 0 0 0 0 0 250

1 0 0 0 0 0 0 0 1 250

2 0 0 0 0 0 0 1 0 250

3 0 0 0 0 0 0 1 1 250

4 0 0 0 0 0 1 0 0 250

5 0 0 0 0 0 1 0 1 250

6 0 0 0 0 0 1 1 0 250

7 0 0 0 0 0 1 1 1 250

8 0 0 0 0 1 0 0 0 250

9 0 0 0 0 1 0 0 1 250

10 0 0 0 0 1 0 1 0 250

11 0 0 0 0 1 0 1 1 250

12 0 0 0 0 1 1 0 0 250

M 101.1

250 ms 0.5 s 0.75 s 1 s 1.25 s 1.5 s

T

Time
0
1

Frequency� 1
T
�

1
1 s

� 1Hz

0

Figure B-8 Signal State of Bit 1 of MB101 (M 101.1)

Programming Examples

B-11
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

B.4 Counter and Comparison Instructions

Figure B-9 shows a system with two conveyor belts and a temporary storage
area in between them. Conveyor belt 1 delivers packages to the storage area.
A photoelectric barrier at the end of conveyor belt 1 near the storage area
determines how many packages are delivered to the storage area. Conveyor
belt 2 transports packages from the temporary storage area to a loading dock
where trucks take the packages away for delivery to customers. A
photoelectric barrier at the end of conveyor belt 2 near the storage area
determines how many packages leave the storage area to go to the loading
dock.

A display panel with five lamps indicates the fill level of the temporary
storage area. Figure B-10 show the ladder logic program that activates the
indicator lamps on the display panel.

Storage area
empty

Display Panel

Storage area
filled to capacity

Storage area
90% full

Storage area
50% full

Storage area
not empty

Packages in Packages out
I 0.0 I 0.1

Conveyor belt 2Conveyor belt 1

Photoelectric barrier 1 Photoelectric barrier 2

Temporary
storage for 100
packages

(Q 12.0) (Q 12.1) (Q 15.2) (Q 15.3) (Q 15.4)

Figure B-9 Storage Area with Counter and Comparator

Storage Area with
Counter and
Comparator

Programming Examples

B-12
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

MW200

I12.0 Q12.1

Network 1: Counter C1 counts up at each signal change from “0” to “1” at input CU and counts down
at each signal change from “0” to “1” at input CD. With a signal change from “0” to ”1” at input S, the
counter value is set to the value PV. A signal change from “0” to “1” at input R resets the counter
value to “0”. MW200 contains the current counter value of C1. Q12.1 indicates “storage area not
empty”.

Q12.0

Network 2: Q12.0 indicates ”storage area empty”.

Q12.1

Network 3: If 50 is less than or equal to the counter value (in other words if the current counter value
is greater than or equal to 50), the indicator lamp for “storage area 50% full” is lit.

CMP

IN150

Q15.2

IN2

Network 4: If the counter value is greater than or equal to 90, the indicator lamp for “storage area 90%
full” is lit.

CMP

IN1

>= I

90

MW200

Q15.3

IN2

<= I

Network 5: If the counter value is greater than or equal to 100, the indicator lamp for “storage area full”
is lit. Use output Q4.4 to interlock conveyor belt 1.

CMP

IN1

>= I

100

MW200

Q15.4

IN2

S_CUD

CD

QCU

S

PV CV

R CV_BCD
I12.3

I12.2

I12.1

C#10

C1

MW210

MW200

Figure B-10 Ladder Logic for Activating Indicator Lamps on a Display Panel

Programming Examples

B-13
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

B.5 Integer Math Instructions

The sample program in Figure B-11 shows you how to use three integer math
instructions to produce the same result as the following equation:

MD4�
(IW0�DBW3)� 15

MW0

DB1

OPN

Network 1: Open Data Block DB1

Network 2: Input word IW0 is added to shared data word DBW3 (data block must be defined and
opened) and the sum is loaded into memory word MW100. MW100 is then multiplied by 15 and the
answer stored in memory word MW102. MW102 is divided by MW0 with the result stored in MW4. As
long as all results are in the permissible range of each instruction, the ENO passes a signal state of 1
to the next box.

ADD_I

IN1

ENOEN

IN2 OUTDBW3

IW0

MW100

MUL_I

IN1

ENOEN

IN2 OUT

MW100

15 MW102

DIV_I

IN1

ENOEN

IN2 OUT

MW102

MW0 MD4

Figure B-11 Ladder Logic for Integer Math Instructions

Solving a Math
Problem

Programming Examples

B-14
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

B.6 Word Logic Instructions

The operator of the oven shown in Figure B-12 starts the oven heating by
pushing the start push button. The operator can set the length of time for
heating by using the thumbwheel switches shown in the figure. The value
that the operator sets indicates seconds in binary coded decimal (BCD)
format. Table B-7 lists the components of the heating system and their
corresponding absolute addresses used in the sample program shown in
Figure B-13.

Table B-7 Heating System Components and Corresponding Absolute Addresses

System Component Absolute Address in STL Program

Start push button I 0.7

Thumbwheel for ones I 1.0 to I 1.3

Thumbwheel for tens I 1.4 to I 1.7

Thumbwheel for hundreds I 0.0 to I 0.3

Heating starts Q 4.0

7....

Oven
Î
Î
Î

ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ

1 0 0 1 0 0 0 1X X X X 0 0 0 1

Heat
Q 4.0

Thumbwheels for setting BCD digits

IW0

4 4 4

Start push button I 0.7

IB1IB0 Bytes

Bits7......0 ...0

Figure B-12 Using the Inputs and Outputs for a Time-Limited Heating Process

Heating an Oven

Programming Examples

B-15
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

T 1

“Heating starts”
Q 4.0

RET

Network 1: If the timer is running, then turn on the heater. If the timer is running, the Return
instruction ends the processing here.

Network 3: Mask input bits I 0.4 through I 0.7 (that is, reset them to 0). These bits of the thumbwheel
inputs are not used. The 16 bits of the thumbwheel inputs are combined with W#16#0FFF according
to the (Word) And Word instruction. The result is loaded into memory word MW1. In order to set the
time base of seconds, the preset value is combined with W#16#2000 according to the (Word) Or
Word instruction, setting bit 13 to 1 and resetting bit 12 to 0.

Network 4: Start timer T 1 as an extended pulse timer if the start push button is pressed, loading as
a preset value memory word MW2 (derived from the logic above).

WAND_W

IN1

ENOEN

IN2

OUT

W#16#FFF

IW0 MW1

WOR_W

IN1

ENOEN

IN2

OUTMW1

W#16#2000

MW2

“Start”
I 0.7 T 1

SE

MW2

T 1

Network 2: If the timer is running, the Return instruction ends the processing here.

Figure B-13 Ladder Logic for Heating an Oven

Programming Examples

B-16
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Programming Examples

C-1
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Number Notation

Section Description Page

C.1 Number Notation C-2

Chapter Overview

C

C-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

C.1 Number Notation

Ladder logic instructions work with data objects of specific sizes (see
Table C-2). For example, the Bit Logic instructions perform their operations
on binary digits (bits); the Move instructions perform their operations on
bytes, words, and double words.

Math instructions also perform their operations on bytes, words, and double
words. In these byte, word, and double word addresses, you can code various
number formats such as integer and real.

If you use symbolic addressing, you define symbols and indicate a data type
for each of these symbols (see Table C-2). Different data types have different
format options and number notation. The information in the following
sections will help you understand formats and number notation.

This chapter of the manual describes only some of the possible number and
constant notations.

Table C-1 Number and Constant Formats Not Covered in this Chapter

Format Size in Bits Number Notation

Hexadecimal 8, 16, and 32 B#16#, W#16#, and DW#16#

Binary 8, 16, and 32 2#

IEC date 16 D#

IEC time 32 T#

Time of day 32 TOD#

Character 8 ’A’

A bit is a binary digit (0 or 1), a byte is 8 bits, a word is 16 bits, and a double
word is 32 bits.

Every input and output parameter of a LAD box can have one of the
following types:

� Elementary types (see Table C-2)

� Structured types (Array, Struct, String, Date_and_Time)

� Timer, counter and block types

� Pointer und array

More detailed information on data structures and arrays which you can define
yourself, and on data types with a different structure, such as STRING and
DATE_AND_TIME, is available in the Programming Manual /120/ and User
Manual /231/.

General
Information

Bits, Bytes, Words,
and Double Words

Data Types

Number Notation

C-3
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Table C-2 Constant Formats for Elementary Data Types

Type and
Description

Size
in
Bits

Format Options Range and Number Notation
 (Lowest Value to Highest Value)

Example

BOOL
(Bit)

1 Boolean text TRUE/FALSE TRUE

BYTE
(Byte)

8 Hexadecimal B#16#0 to B#16#FF B#16#10
byte#16#10

WORD
(Word)

16 Binary

Hexadecimal

BCD
Unsigned decimal

2#0 to
2#1111_1111_1111_1111
W#16#0 to W#16#FFFF

C#0 to C#999
B#(0,0) to B#(255,255)

2#0001_0000_0000_0000

W#16#1000
word16#1000
C#998
B#(10,20)
byte#(10,20)

DWORD
(Double
word)

32 Binary

Hexadecimal
Unsigned decimal

2#0 to
2#1111_1111_1111_1111_
1111_1111_1111_1111
DW#16#0000_0000 to
DW#16#FFFF_FFFF
B#(0,0,0,0) to
B#(255,255,255,255)

2#1000_0001_0001_1000_
1011_1011_0111_1111

DW#16#00A2_1234
dword#16#00A2_1234
B#(1,14,100,120)
byte#(1,14,100,120)

INT
(Integer)

16 Signed decimal -32768 to 32767 1

DINT
(Double
integer)

32 Signed decimal L#-2147483648 to L#2147483647 L#1

REAL
(Floating
point)

32 IEEE
floating point

Upper limit: ±3.402823e+38
Lower limit: ±1.175 495e-38 (see also
Table C-5)

1.234567e+13

S5TIME
(SIMATIC
time)

16 S5 Time in
10-ms units (as
default value)

S5T#0H_0M_0S_10MS to
S5T#2H_46M_30S_0MS and
S5T#0H_0M_0S_0MS

S5T#0H_1M_0S_0MS
S5TIME#0H_1M_0S_0MS

TIME
(IEC time)

32 IEC time in 1-ms
units, signed
integer

T#-24D_20H_31M_23S_648MS to
T#24D_20H_31M_23S_647MS

T#0D_1H_1M_0S_0MS
TIME#0D_1H_1M_0S_0MS

DATE
(IEC date)

16 IEC date
in 1-day units

D#1990-1-1 to
D#2168-12-31

D#1994-3-15
DATE#1994-3-15

TIME_OF_
DAY
(Time of
day)

32 Time of day in
1-ms units

TOD#0:0:0.0 to
TOD#23:59:59.999

TOD#1:10:3.3
TIME_OF_DAY#1:10:3.3

CHAR
(Character)

8 Character ’A’,’B’, and so on ’E’

An integer is a whole number that has a sign to indicate whether it is positive
or negative. In memory, a 16-bit integer takes up one word of space.
Table C-3 shows the range of a 16-bit integer. Figure C-1 shows the integer
+ 44 in binary format.

Integers: 16 Bits

Number Notation

C-4
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Table C-3 Integer Range

Format Range

16-bit integer -32,768 to +32,767

1 1 0 0
037 48111215Bits

Sign Decimal Values: 32 + 8 + 4 = 44

0 0 1 00 0 0 00 0 0 0

Figure C-1 A 16-Bit Integer in Binary Format: +44

An integer is a whole number that has a sign to indicate whether it is positive
or negative. In memory, a 32-bit integer (double integer) takes up two words
of space. Table C-4 shows the range of a double integer. Figure C-2 shows
the integer - 500,000 in binary format. In binary format, the negative form of
an integer is represented as the twos complement of the positive form of that
integer. You obtain the twos complement of an integer by inverting the signal
states of all bits and then adding + 1 to the result.

Table C-4 Double Integer Range

Format Range

32-bit integer -2,147,483,648 to +2,147,483,647

 0 0 0 0
037 481112

Bits

Sign

151619202324272831
 1 1 1 0 1 1 1 0 0 1 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Figure C-2 A 32-Bit Integer in Binary Format: -500,000

A real number (also called floating-point number) is a positive or negative
number that includes a decimal value, for example, 0.339 or - 11.1. You can
also include an exponent with a real number to indicate the integer power of
10 by which the real number is multiplied to obtain the value you want to
represent. For example, you can represent 1,234,000 as 1.234E6 or 1.234e6
(that is, 1.234 � 106). Table C-5 shows the range of a real number.

In memory, a real number takes up two words of space (32 bits, see
Figure C-3). The most significant bit indicates the sign of the number (bit 31,
where 0 indicates plus, 1 indicates minus). The other bits represent the
exponent and the mantissa.

Double Integers:
32 Bits

Real Numbers

Number Notation

C-5
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Table C-5 Real Number Ranges

Format Range1

Real numbers
-3.402823E+38 to -1.175495E-38

and � 0 and
+1.175495E-38 to +3.402823E+38

1 If the result of a floating-point operation falls into the ranges of -1.175495E-38 to
-1.401298E-45 or +1.401298E-45 to +1.175495E-38, then an underflow is
generated (see Table 12-6). This is the range of denormalized numbers.

Real numbers (also called floating-point numbers) in ladder logic conform to
the basic format, single width, described in ANSI/IEEE Std 754-1985, IEEE
Standard for Binary Floating-Point Arithmetic. In this format, you can
represent only those values that are specified by the following three integer
parameters:

� p = the number of significant bits (precision)

� Emax = the maximum exponent

� Emin = the minimum exponent

Table C-6 shows the format parameters.

Table C-6 Format Parameters for Real Numbers

Parameter Name Parameter Value

p 24

Emax +127

Emin -126

Exponent bias +127

Exponent width in bits 8

Format width in bits 32

The format includes the following entities:

� Numbers of the form (-1)s 2E (b0 .� b1 b2...bp-1), where

– s = 0 or 1

– E = any integer between Emin and Emax, inclusive

– bi = 0 or 1

� Two infinities, +� and -�

� At least one signaling NaN (NaN means “not a floating-point number”)

� At least one quiet NaN (NaN means “not a floating-point number”)

Format for Real
Numbers

Number Notation

C-6
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Real numbers (also called floating-point numbers) of the basic format, single
width, are composed of the following fields (see Figure C-3):

� A one-bit sign: s

� A biased exponent: e = E + bias

� A fraction: f = .� b1 b2...bp-1

The range of the unbiased exponent E is every integer between Emin and
Emax (that is, -126 to +127), inclusive, and two other reserved values Emin-1
to encode �0 and denormalized numbers, and Emax + 1 to encode �� and
NaNs.

Figure C-3 shows the three fields (s, e, and f) of a 32-bit floating-point
number. In the figure, a 32-bit floating-point number X has a value v that you
derive from the fields in the following manner:

� If e = 255 and if f �0, then v is NaN regardless of s.

� If e = 255 and if f = 0, then v = (-1)s �.

� If 0 < e < 255, then v = (-1)s 2e-127 (1 . f).

(In this case, you are dealing with a normalized number.)

� If e = 0 and f �0, then v = (-1)s 2e-126 (0 . f).

(In this case, you are dealing with a denormalized number.)

� If e = 0 and f = 0, then v = (-1)s 0 (zero).

037 481112
Bits

Sign of
Mantissa: s
(1 bit)

151619202324272831

Exponent: e
(8 bits)

Mantissa or fraction: f
(23 bits)

s e f

Figure C-3 Format of a Real Number

Component Fields
of a Real Number

Number Notation

C-7
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Figure C-4 shows the real number format for the following decimal values:

� 10.0

� � (3.141593)

� Square root of 2 (�2 = 1.414214)

The hexadecimal value for the real number is shown in the row above the bit
numbers.

0

037 481112Bits

Sign of
Mantissa: s
(1 bit)

151619202324272831

Exponent: e
(8 bits)

Mantissa or fraction: f
(23 bits)

f = 2-2 = 0.25

0 1 0 0 0 1 10 0

Hexadecimal
value 4 1 2 0 0 0 0 0

1

037 481112Bits

Sign of
Mantissa: s
(1 bit)

151619202324272831

Exponent: e
(8 bits)

Mantissa or fraction: f
(23 bits)

0 1 0 0 0 0 00 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 1 0 0

Hexadecimal
value 4 0 4 9 0 F D C

0

037 481112Bits

Sign of
Mantissa: s
(1 bit)

151619202324272831

Exponent: e
(8 bits)

Mantissa or fraction: f
(23 bits)

0 0 1 1 1 1 11 1 1 0 1 1 0 1 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 1

Hexadecimal
value 3 F B 5 0 4 F 7

Decimal value 10.0

Decimal value 3.141593

Decimal value 1.414214

e = 27 + 21 = 130
1.f � 2e-bias = 1.25 � 23 = 10.0
[1.25 � 2(130-127) = 1.25 � 23 = 10.0]

Figure C-4 Example of a Floating-Point Number Format for Decimal Value 10.0

Examples of Real
Number Format

Number Notation

C-8
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

The binary coded decimal (BCD) format represents a decimal number by
using groups of binary digits (bits). One group of 4 bits represents one digit
of a signed decimal number or the sign of the decimal number. The groups of
4 bits are combined to form a word (16 bits) or double word (32 bits). The
four most significant bits indicate the sign of the number (1111 indicates
minus and 0000 indicates plus). Commands with BCD-coded addresses only
evaluate the highest-value bit (15 in word, 31 in double word format).
Table C-7 shows the format and range for the two types of BCD numbers.
Figure C-5 and Figure C-6 provide an example of a binary coded decimal
number in word format and double word format, respectively.

Table C-7 Binary Coded Decimal Numbers with 16 and 32 Bits

Format Range

Word (16 bits, three-digit BCD number
with sign)

-999 to +999

Double word (32 bits, seven-digit BCD
number with sign)

-9,999,999 to +9,999,999

+310 (Decimal format)

0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0
037 48111215Bits

Sign
Hundreds

(102)
Tens
(101)

Ones
(100)

Figure C-5 Binary Coded Decimal Number in Word Format

-9,999,999 (Decimal format)

1 0 0 1 1 0 0 1 1 0 0 1
037 481112

Bits

Sign Hundreds
(102)

Tens
(101)

Ones
(100)

Thousands
(103)

Tens of
Thousands

(104)

Hundreds of
Thousands

(105)

Millions
(106)

1 1 1 1
151619202324272831
1 0 0 11 0 0 11 0 0 11 0 0 1

Figure C-6 Binary Coded Decimal Number in Double Word Format

Binary Coded
Decimal Numbers

Number Notation

C-9
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

When you enter time duration using the S5TIME data type, your entries are
stored in binary coded decimal format (BCD, see Figure C-7 and Table C-8).

When working with S5TIME, you enter a time value in the range of 0 to 999
and you indicate a time base (see Table C-8). The time base indicates the
interval at which a timer decrements the time value by one unit until it
reaches 0.

Time base
1 second

Irrelevant: These bits are ignored when the timer is started.

Time value in BCD (0 to 999)

15... ...8 7... ...0

1 2 7

x x 1 0 0 0 0 1 0 0 1 0 0 1 1 1

Figure C-7 Contents of Timer Address: Timer Value 127, Time Base 1 Second

Table C-8 Time Base for S5TIME

Time Base Binary Code for the Time Base

10 ms 00

100 ms 01

1 s 10

10 s 11

You can pre-load a time value using either of the following syntax formats:

� W#16#wxyz

– Where w = the time base (that is, the time interval or resolution)

– Where xyz = the time value in binary coded decimal format

� S5T# aH_bbM_ccS_ddMS

– Where a = hours, bb = minutes, cc = seconds, and dd = milliseconds

– The time base is selected automatically and the value is rounded to the
next lower number with that time base.

The maximum time value that you can enter is 9,990 seconds, or
2H_46M_30S.

When you enter date and time using the DATE_AND_TIME data type, your
entries are stored in binary coded decimal format (see Table C-9). The
DATE_AND_TIME data type has the following range:

DT#1990-1-1-0:0:0.0 to DT#2089-12-31-23:59:59.999

Entering Duration
of Time

Entering Date and
Time

Number Notation

C-10
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

The following examples show the syntax for the date and time for Thursday,
December 25, 1993, at 8:01 and 1.23 seconds in the morning. The following
two formats are possible:

� DATE_AND_TIME#1993-12-25-8:01:1.23

� DT#1993-12-25-8:01:1.23

The following special IEC (International Electrotechnical Commission)
standard functions are available for working with the DATE_AND_TIME
data type (for more information, see the Programming Manual /234/:

� Convert date and time of day to the DATE_AND_TIME (DT) format

FC3: D_TOD_DT

� Extract the date from the DATE_AND_TIME format

FC6: DT_DATE

� Extract the day of the week from the DATE_AND_TIME format

FC7: DT_DAY

� Extract the time of day from the DATE_AND_TIME format

FC8: DT_TOD

Table C-9 shows the contents of the bytes that contain the date and time
information for Thursday, December 25, 1993, at 8:01 and 1.23 seconds in
the morning.

Table C-9 Contents of the Date and Time Bytes

Byte Contents Example

0 Year B#16#93

1 Month B#16#12

2 Day B#16#25

3 Hour B#16#08

4 Minute B#16#01

5 Second B#16#01

6 Two most significant digits of MSEC B#16#23

7
(4MSB)

Least significant digit of MSEC B#16#6

7
(4LSB)

Day of week
1 = Sunday
2 = Monday
...
7 = Saturday

B#16#5

Number Notation

D-1
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

References

/30/ Primer: S7-300 Programmable Controller,
Quick Start

/70/ Manual: S7-300 Programmable Controller,
Hardware and Installation

/71/ Reference Manual: S7-300, M7-300 Programmable Controllers
Module Specifications

/72/ Instruction List: S7-300 Programmable Controller

/100/ Manual: S7-400/M7-400 Programmable Controllers,
Hardware and Installation

/101/ Reference Manual: S7-400/M7-400 Programmable Controllers
Module Specifications

/102/ Instruction List: S7-400 Programmable Controller

/231/ User Manual: Standard Software for S7 and M7,
STEP 7

/232/ Manual: Statement List (STL) for S7-300 and S7-400
Programming

/234/ Programming Manual: System Software for S7-300 and S7-400
Program Design

/235/ Reference Manual: System Software for S7-300 and S7-400
System and Standard Functions

/236/ Manual: FBD for S7-300 and 400,
Programming

/237/ Master Index, STEP 7

/250/ Manual: Structured Control Language (SCL) for S7-300/S7-400,
Programming

/251/ Manual: GRAPH for S7-300 and S7-400,
Programming Sequential Control Systems

/252/ Manual: HiGraph for S7-300 and S7-400,
Programming State Graphs

/253/ Manual: C Programming for S7-300 and S7-400,
Writing C Programs

/254/ Manual: Continuous Function Charts (CFC) for S7 and M7,
Programming Continuous Function Charts

D

D-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

/270/ Manual: S7-PDIAG for S7-300 and S7-400
“Configuring Process Diagnostics for LAD, STL, and FBD”

/271/ Manual: NETPRO,
“Configuring Networks”

/800/ DOCPRO
Creating Wiring Diagrams (CD only)

/801/ TeleService for S7, C7 and M7
Remote Maintenance for Automation Systems (CD only)

/802/ PLC Simulation for S7-300 and S7-400 (CD only)

/803/ Reference Manual: Standard Software for S7-300 and S7-400,
STEP 7 Standard Functions, Part 2

References

Glossary-1
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Glossary

A

Absolute addressing specifies the location of the address which is currently
being processed.

Accumulators are registers in the CPU which act as intermediate buffers for
load, transfer, comparison, math, and conversion operations.

Actual parameters replace the formal parameters when function blocks (FB)
and functions (FC) are called.
Example: The formal parameter “Start” is replaced by the actual parameter
“I 3.6”.

An address is part of a STEP 7 statement instruction which determines the
medium the processor should use to do something. It can be addressed with
either an absolute or a symbolic name.

An address identifier is the part of the address which contains various data.
The data can include elements such as a value itself (data object) or the size
of a value with which the instruction can, for example, perform a logic
operation. In the instruction statement “L IB10” IB is the address identifier
(“I” indicates the memory input area and “B” indicates a byte in that area).

The address register is part of the registers in the communication part of the
CPU. They act as pointers for register indirect addressing (possible in STL).

An array is a complex data type which consists of data elements of the same
type. These elements can be elementary or complex.

Absolute
Addressing

Accumulator

Actual Parameter

Address

Address Identifier

Address Register

Array

Glossary-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

B

The bit result is the link between bit and word-oriented processing. This is an
efficient method to allow the binary interpretation of the result of a word
instruction and to include it in a series of logic operations.

C

All blocks must be called first before they can be processed. The sequence
and nesting of these calls within an organized block is called the call
hierarchy.

Specific graphic source file created with the programming language CFC
(Continuous Function Chart).

The CC 1 and CC 0 bits (condition codes) provide information on the
following results or bits:

� Result of a math operation

� Result of a comparison

� Result of a digital operation

� Bits that have been shifted out by a shift or rotate command

Folder of the user interface of the SIMATIC Manager which can be opened
and can hold other folders and objects.

A CPU (central processing unit) is the central module in a programmable
controller in which the user program is stored and processed. It consists of an
operating system, processing unit, and communication interfaces.

Characteristics of the Ladder Logic representation type. Current paths
contain contacts and coils. Complex elements (e.g. math functions) can also
be inserted into current paths in the form of “boxes”. Current paths are
connected to power rails.

Bit Result (BR)

Call Hierarchy

Chart

Condition Codes
CC 1 and CC 0

Container

CPU

Current Path

Glossary

Glossary-3
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

D

Data blocks are areas in a user program which store user data. There are
shared data blocks which can be accessed by all logic blocks and there are
instance data blocks which are associated with a certain function block (FB)
calls. In contrast to all other blocks, data blocks do not contain instructions.

Static data are local data of a function block which are stored in the instance
data block and, therefore, remain intact until the function block is processed
again.

A data type defines how the value of a variable or a constant should be used
in the user program.

In SIMATIC STEP 7 two data types are available to the user (IEC 1131–3):

� Elementary data types

� Complex data types

Complex data types are created by the user with the data type declaration.
They do not have their own name and cannot, therefore, be used again. They
can either be arrays or structures. The data types STRING and DATE AND
TIME are classed as complex data types.

Elementary data types are preset data types according to IEC 1131–3.

Examples:

� “BOOL” defines a binary variable (“Bit”)

� Data type “INT” defines a 16-bit fixed-point variable.

The declaration section is used for the declaration of the local data of a logic
block when programming in the Text Editor.

In direct addressing the address contains the memory location of a value
which is to be used by the instruction.

Example:

The location Q4.0 defines bit 0 in byte 4 of the process-image output table.

Data Block (DB)

Data, Static

Data Type

Data Type,
Complex

Data Type,
Elementary

Declaration

Direct Addressing

Glossary

Glossary-4
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

F

First check of the result of logic operation.

A folder on the user interface of the SIMATIC Manager that can be opened
and that can contain other folders and objects.

A formal parameter is a stand-in for the actual parameter in logic blocks. In
function blocks (FBs) and functions (FCs) the formal parameters are declared
by the user, in system function blocks (SFBs) and system functions (SFCs)
they are already available. When a block is called, formal parameters are
assigned actual parameters; the block works with the actual parameters.
The formal parameters are classed as local data. They can be input, output, or
in/out parameters.

According to the International Electrotechnical Commission’s IEC 1131–3
standard, functions are logic blocks that do not reference an instance data
block, meaning they do not have a ’memory’. A function allows you to pass
parameters in the user program, which means they are suitable for
programming frequently recurring, complex functions, such as calculations.

According to the International Electrotechnical Commission’s IEC 1131–3
standard, function blocks are logic blocks that reference an instance data
block, meaning they have static data. A function block allows you to pass
parameters in the user program, which means they are suitable for
programming frequently recurring, complex functions, such as closed-loop
control and operating mode selection.

Function Block Diagram is one of the programming languages in STEP 7.
FBD represents logic in the boxes familiar from Boolean algebra. In STEP 5,
this language is known as Control System Flowchart (CSF).

I

In immediate addressing the address contains the value with which the
instruction works.

Example: L.27 means load constant 27 into accumulator.

First Check Bit

Folder

Formal Parameter

Function (FC)

Function Block
(FB)

Function Block
Diagram (FBD)

Immediate
Addressing

Glossary

Glossary-5
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

When a block is input incrementally, each line or element is checked
immediately for errors (for example syntax errors). If an error is detected, it
is marked and must be corrected before programming is completed.
Incremental input is possible in STL (Statement List), LAD (Ladder Logic),
and FBD (Function Block Diagram).

An “instance” is the call of a function block. If, for example, a function is
called five times in a STEP 7, then there are five instances. Each call is
assigned to an instance data block.

An instance data block stores the formal parameters and the static local data
of function blocks. An instance data block can be assigned to one or more
function blocks.

An instruction is part of a statement; it specifies what the processor should
do.

K

Key words are used when programming with source files to identify the start
and end of a block and to select sections in the declaration section of blocks,
the start of block comments and the start of titles.

L

Ladder Logic is a graphic programming language in STEP 5 and STEP 7. Its
representation is standardized in compliance with DIN 19239 (international
standard IEC 1131-1). Ladder Logic representation corresponds to the
representation of relay ladder logic diagrams. In contrast to Statement List
(STL), LAD has a restricted set of instructions. In STEP 5, this language is
known as Ladder Diagram.

Logic blocks are the blocks within STEP 7 that contain the program for the
control logic. In contrast, data blocks (DBs) only contain data. There are the
following types of logic blocks: organization blocks (OBs), functions (FCs),
function blocks (FBs), system functions (SFCs), and system function blocks
(SFBs).

Input, Incremental

Instance

Instance Data
Block (DB)

Instruction

Key Word

Ladder Logic
(LAD)

Logic Block

Glossary

Glossary-6
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

A logic string is that portion of a user program which begins with an FC bit
that has a signal state of 0 and which ends when an instruction or event resets
the FC bit to 0. When the CPU executes the first instruction in a logic string,
the FC bit is set to 1. Certain instructions such as output instructions (for
example, Set, Reset, or Assign) reset the FC bit to 0. See First Check Bit
above.

M

The Master Control Relay (MCR) is an American relay ladder logic master
switch for energizing and de-energizing power flow (current path). A
de-energized current path corresponds to an instruction sequence that writes a
zero value instead of the calculated value, or, to an instruction sequence that
leaves the existing memory value unchanged.

A CPU in the SIMATIC Manager has three memory areas:

� Load memory

� Work memory

� System memory

A type of addressing in which the address of an instruction indicates the
location of the value with which the instruction is to work.

Mnemonic representation is an abbreviated form for displaying the names of
addresses and programming instructions in the program (for example, “I”
stands for “input”). STEP 7 supports the international representation (based
on the English language), and the SIMATIC representation (based on the
German abbreviations of the instruction set and the SIMATIC addressing
conventions).

N

The nesting stack is a storage byte used by the nesting instructions A(, O(,
X(, AN(, ON(, XN(. A total of eight bit logic instructions can be stacked.

Networks subdivide LAD blocks into complete current paths.

Logic String

Master Control
Relay

Memory Area

Memory Indirect
Addressing

Mnemonic
Representation

Nesting Stack

Network

Glossary

Glossary-7
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

O

The OR bit is needed if you perform a logical AND before OR operation.
The OR bit shows these instructions that a previously executed AND function
has supplied the value 1, thus forestalling the result of the logical OR
operation. Any other bit-processing command resets the OR bit.

The status bit OS stands for overflow. An overflow can occur, for example,
after a math operation.

P

You can use a pointer to identify the address of a variable. A pointer contains
an identifier instead of a value. If you allocate an actual parameter type, you
provide the memory address. With STEP 7 you can either enter the pointer in
pointer format or simply as an identifier (e.g. M 50.0). In the following
example, the pointer format is shown with which data from M 50.0 is
accessed:

P#M50.0

A project is a container for all objects in an automation task, irrespective of
the number of stations, modules, and how they are connected in networks.

R

Reference data are used to check your CPU program and include cross
reference lists, assignment list, user program structure, the list of unused
addresses, and the list of addresses without symbols.

A type of addressing in which the address of an instruction indicates
indirectly via an address register and an offset the memory location of the
value with which the instruction is to work.

The result of logic operation (RLO) is the current signal state in the
processor, which is used to process other binary signals. The execution of
certain instructions depends entirely on their preceding RLO.

OR Bit

Overflow Bit

Pointer

Project

Reference Data

Register Indirect
Addressing

Result of Logic
Operation (RLO)

Glossary

Glossary-8
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

S

A container for user programs, source files, and charts for S7 programmable
controllers. The S7 program also includes the symbol table.

A shared data block is a DB whose address is loaded in the DB address
register when it is opened. It provides storage and data for all logic blocks
(FC, FB, or OB) that are being executed.

In contrast, an instance DB is designed to be used as specific storage and data
for the FB with which it has been associated.

The SIMATIC Manager is the graphical user interface for SIMATIC users
under Windows 95.

A source file (text file) is part of a program created either with a graphic or a
textual Editor and is compiled into an executable S7 user program or the
machine code for M7.
An S7 source file is stored un the “Sources” folder in the S7 program.

A statement is the smallest independent part of a user program created in a
textual language. The statement represents a command for the processor.

Statement List is a textual representation of the STEP 7 programming
language, similar to machine code. STL is the assembler language of STEP 5
and STEP 7. If you program in STL, the individual statements represent the
actual steps in which the CPU executes the program.

A station is a device which can be connected to one or more subnets, for
example the programmable controller, programming device, operator station.

The status bit stores the value of a bit that is referenced. The status of a bit
instruction that has read access to the memory (A, AN, O, ON, X, XN) is
always the same as the value of the bit that this instruction checks (the bit on
which it performs its logic operation). The status of a bit instruction that has
write access to the memory (S, R, =) is the same as the value of the bit to
which the instruction writes or, if no writing takes place, the same as the
value of the bit that the instruction references. The status bit has no
significance for bit instructions that do not access the memory. Such
instructions set the status bit to 1 (STA=1). The status bit is not checked by
an instruction. It is interpreted during program test (program status) only.

S7 Program

Shared Data Block
(DB)

SIMATIC Manager

Source File

Statement

Statement List
(STL)

Station

Status Bit

Glossary

Glossary-9
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

The status word is part of the register of the CPU. It contains status
information and error information which is displayed when specific STEP 7
commands are executed. The status bits can be read and written on by the
user, the error bits can only be read.

A source file programmed in Statement List.

The status bit OS stands for “stored overflow bit of the status word”. An
overflow can take place, for example, after a math operation.

In symbolic addressing the address being processed is designated with a
symbol (as opposed to an absolute address).

A system function is integrated in the CPU and can, if necessary, be called
from the STEP 7 user program.

A system function block is a function block that is integrated in the S7
operating system that you can call from your program if necessary.

A symbol is a name which can be defined by the user subject to syntax
guidelines. After it has been declared (for example, as a variable, data type,
jump label, block etc) the symbol can be used for programming and for
operator interface functions. Example: Address: I 5.0, data type: Bool,
Symbol: momentary contact switch / emergency stop.

A table in which the symbols of addresses for shared data and blocks are
allocated. Examples: Emergency Stop (symbol) -I 1.7 (address) or
closed-loop control (symbol) - SFB24 (block).

U

User data types are special data structures which you can create yourself and
use in the entire CPU program after they have been defined. They can be
used like elementary or complex data types in the variable declaration of
logic blocks (FCs, FBs, OBs) or as a template for creating data blocks with
the same data structure.

Status Word

STL Source File

Stored Overflow
Bit

Symbolic
Addressing

System Function
(SFC)

System Function
Block (SFB)

Symbol

Symbol Table

User Data Types
(UDTs)

Glossary

Glossary-10
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

The user program contains all the statements and declarations and all the data
for signal processing which can be used to control a device or a process. It is
part of a programmable module (CPU, FM) and can be structured with
smaller units (blocks).

A container for blocks loaded into a programmable S7 module (e.g. CPU,
FM) where they are capable of running to control a unit or process.

The user program structure describes the call hierarchy of the blocks within a
CPU program and provides an overview of the blocks used and their
dependency.

V

The variable declaration includes a symbolic name, a data type and,
optionally, an initial value, an address, and a comment.

The variable declaration table is used for declaring the local data of a logic
block, when programming takes place in the Incremental Editor.

The variable table is used for compiling all the variables that are to be
observed and controlled along with their corresponding formats.

User Program

User Program
(SW Object)

User Program
Structure

Variable
Declaration

Variable
Declaration Table

Variable Table

Glossary

Index-1
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Index

Symbols
(Word) And Double Word (WAND_DW)

instruction, 15-4–15-5
(Word) And Word (WAND_W) instruction,

15-3–15-4
(Word) Exclusive Or Double Word

(WXOR_DW) instruction, 15-8–15-9
(Word) Exclusive Or Word (WXOR_W)

instruction, 15-7–15-8
(Word) Or Double Word (WOR_DW)

instruction, 15-6–15-7
(Word) Or Word (WOR_W) instruction,

15-5–15-6
––(). See Output Coil instruction
––(#)––. See Midline Output instruction
––(CALL). See Call FC/SFC from Coil

instruction
––(CD). See Down Counter Coil instruction
––(CU). See Up Counter Coil instruction
––(JMP). See Jump instruction
––(JMPN). See Jump–If–Not instruction
––(MCR<). See Master Control Relay On

instruction
––(MCR>). See Master Control Relay Off

instruction
––(N)––. See Negative RLO Edge Detection

instruction
––(P)––. See Positive RLO Edge Detection

instruction
––(R). See Reset Coil instruction
––(RET). See Return instruction
––(S). See Set Coil instruction
––(SAVE). See Save RLO to BR Memory

instruction
––(SC). See Set Counter Value instruction
––(SD). See On-Delay Timer Coil instruction
––(SE). See Extended Pulse Timer Coil

instruction
––(SF). See Off-Delay Timer Coil instruction
––(SP). See Pulse Timer Coil instruction
––(SS). See Retentive On-Delay Timer Coil

instruction

––(ZR). See Down Counter Coil instruction,
SIMATIC short name

––(ZV). See Up Counter Coil instruction,
SIMATIC short name

––| |––. See Normally Open Contact (Address)
instruction

––| BIE |––. See Exception Bit BR Memory
instruction, SIMATIC short name

––| BR |––. See Exception Bit BR Memory
instruction

––| OV |––. See Exception Bit Overflow
instruction

––| OVS|––. See Exception Bit Overflow Stored
instruction

––| UO |––. See Exception Bit Unordered
instruction

––|/|––. See Normally Closed Contact (Address)
instruction

––|NOT|––. See Invert Power Flow instruction

A
Absolute addressing, practical application, B-4
Absolute value, floating-point number, 12-8
Accumulators

count value in, 10-2
time value in, 9-3

ACOS. See Arc cosine
Actual value

data view of, 4-6
reinitializing, 4-7

Actual values
changing, 4-7
saving, 4-7

Add Double Integer (ADD_DI) math
instruction, 11-3–11-4

Add Integer (ADD_I) math instruction,
11-2–11-3

Add Real (ADD_R) floating-point math
instruction, 12-3–12-4

ADD_DI. See Add Double Integer math
instruction

Index-2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

ADD_I. See Add Integer math instruction
ADD_R. See Add Real floating-point math

instruction
Address, 3-7

description of, 7-4
entering in Ladder, 3-23
label for a jump instruction, 18-2
types, 7-4

Address Negative Edge Detection (NEG)
instruction, 8-22–8-23

Address Positive Edge Detection (POS)
instruction, 8-21–8-22

Addressing
absolute, B-4
definition of, 7-2
symbolic, 3-24, B-3

Arc cosine (ACOS), 12-13–12-15
Arc sine (ASIN), 12-13–12-14
Arc tangent (ATAN), 12-13
Arrays, in the variable declaration table, 3-9
ASIN. See Arc sine
Assign a Value (MOVE) instruction, 14-2–14-3
Assignment

DBs to FBs, 4-4
DBs to UDTs, 4-4

ATAN. See Arc tangent

B
BCD. See Binary coded decimal format
BCD to Double Integer (BCD_DI) conversion

instruction, 14-7–14-8
BCD to Integer (BCD_I) conversion instruction,

14-4–14-5
BCD_DI. See BCD to Double Integer

conversion instruction
BCD_I. See BCD to Integer conversion

instruction
BCDF. See Errors, binary coded decimal

conversion
Binary coded decimal (BCD) format, C-8
Binary result (BR)

Exception Bit BR Memory ––| BR |––
instruction, 19-3

saving the RLO to the binary result bit, 8-8
Bit, as data type, C-2
Bit logic, practical applications, B-3–B-6

Bit logic instructions, 8-2–8-33
See also Status bit instructions
Address Negative Edge Detection,

8-22–8-23
Address Positive Edge Detection, 8-21–8-22
Down Counter Coil ––(CD), 8-13
Extended Pulse Timer Coil ––(SE), 8-15
Invert Power Flow ––|NOT|––, 8-7
Midline Output ––(#)––, 8-6–8-7
Negative RLO Edge Detection ––(N)––,

8-20
Normally Closed Contact (Address) ––|/|––,

8-4–8-5
Normally Open Contact (Address) ––| |––,

8-3–8-4
Off-Delay Timer Coil ––(SF), 8-18
On-Delay Timer Coil ––(SD), 8-16
Output Coil ––()––, 8-5–8-6
Positive RLO Edge Detection ––(P)––, 8-19
practical applications, B-3–B-6
Pulse Timer Coil ––(SP), 8-14–8-15
Reset Coil ––(R), 8-10
Reset Set Flipflop, 8-24–8-25
Retentive On-Delay Timer Coil ––(SS), 8-17
Save RLO to BR Memory, 8-8
Set Coil ––(S), 8-9
Set Counter Value ––(SC), 8-11
Set Reset Flipflop, 8-23–8-24
Up Counter Coil ––(CU), 8-12

Block attributes, in the Incremental Editor, 5-3
Block properties, 3-2, 4-2

processing of, 5-2
Block protection, 5-3
Blocks

abandoning, 20-7
calling, 20-2–20-6

from libraries, 3-20
creating, 2-5
downloading, 2-6
entering in STL, 3-14
opening, 2-5
order of creating, 2-7
properties, 3-2, 4-2
saving, 2-6

Boolean (BOOL)
as data type, C-2
range, 7-3, C-3

Index

Index-3
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Branch, creating, 3-21
Byte

as data type, C-2
range, 7-3, C-3

C
Call environment, 5-7

See also Trigger conditions
Call FC/SFC from Coil ––(CALL) instruction,

20-2–20-3
Calling function blocks

effect of the call on the bits of the status
word, 20-4

from a box, 20-4–20-6
supplying parameters, 20-6

Calling functions
effect of the call on the bits of the status

word, 20-4
from a box, 20-4–20-6
supplying parameters, 20-6
with the Call FC/SFC from Coil instruction,

20-2–20-3
Calling system function blocks

effect of the call on the bits of the status
word, 20-4

from a box, 20-4–20-6
supplying parameters, 20-6

Calling system functions
effect of the call on the bits of the status

word, 20-4
supplying parameters, 20-6
with the Call FC/SFC from Coil instruction,

20-2–20-3
CEIL. See Ceiling conversion instruction
Ceiling (CEIL) conversion instruction,

14-17–14-18
Character (CHAR), range, 7-3, C-3
Checking the scan time, 5-9
CMP_D. See Compare Double Integer

instruction
CMP_I. See Compare Integer instruction
CMP_R. See Compare Real instruction
Code section, 3-2

editable parts, 3-13
editing, 3-13
Ladder, 3-4

Color, of selections, 3-18
Column width, in the variable declaration table,

3-7

Comment
block comment, 3-28
in the declaration table, 3-7
network comment, 3-28

Compare Double Integer (CMP_D) instruction,
13-3–13-4

Compare Integer (CMP_I) instruction,
13-2–13-3

Compare Real (CMP_R) instruction, 13-5–13-6
Comparing the result of a math function to 0,

19-4–19-5
Comparison instructions

Compare Double Integer, 13-3–13-4
Compare Integer, 13-2–13-3
Compare Real, 13-5–13-6
practical applications, B-11–B-12

Condition codes (CC 1 and CC 0)
as affected by floating-point math

instructions, 12-7
as related to the Exception Bit Unordered

instruction, 19-6–19-7
as related to the Result Bits instructions,

19-4–19-5
Conversion instructions

BCD to Double Integer (BCD_DI),
14-7–14-8

BCD to Integer (BCD_I), 14-4–14-5
Ceiling (CEIL), 14-17–14-18
Double Integer to BCD (DI_BCD),

14-8–14-9
Double Integer to Real (DI_REAL),

14-9–14-10
Floor (FLOOR), 14-18–14-19
Integer to BCD (I_BCD), 14-5–14-6
Integer to Double Integer (I_DINT),

14-6–14-7
Negate Real Number (NEG_R),

14-14–14-15
Ones Complement Double Integer

(INV_DI), 14-11–14-12
Ones Complement Integer (INV_I),

14-10–14-11
Round to Double Integer (ROUND),

14-15–14-16
Truncate Double Integer Part (TRUNC),

14-16–14-17
Twos Complement Double Integer

(NEG_DI), 14-13–14-14
Twos Complement Integer (NEG_I),

14-12–14-13

Index

Index-4
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Count value
format, 10-2
range, 10-2

Counters
area in memory, 10-2
count value

format, 10-2
range, 10-2

instructions used with counters
Down Counter Coil ––(CD), 8-13
practical applications, B-11–B-12
Set Counter Value ––(SC), 8-11
Up Counter Coil ––(CU), 8-12
Up-Down Counter (S_CUD), 10-3–10-4

number supported, 10-2
Counting

down, 8-13, 10-7–10-8
up, 8-12, 10-5–10-6
up and down, 10-3–10-4

CPU registers, accumulators
count value in accumulator 1, 10-2
time value in accumulator 1, 9-3

Create
data block, 4-4
user program, 3-2

D
Data block (DB)

changing actual values, 4-7
instance, 20-6
methods of creating, 4-2

Data blocks, 2-3
data view of, 4-6
declaration view, 4-5
with associated FB, 4-2
with associated UDT, 4-2

Data format. See Number notation
Data type, in the declaration table, 3-7
Data types, 7-3, C-2

Boolean (BOOL), 7-3, C-2, C-3
BYTE, 7-3, C-3
byte, C-2
character (CHAR), 7-3, C-3
date (D), 7-3, C-3
DATE AND TIME (DT), C-10
double integer (DINT), 7-3, C-3, C-4
double word (DWORD), 7-3, C-2, C-3
integer (INT), 7-3, C-3
REAL, 7-3, C-3
real (REAL), C-4–C-6

S5 TIME, 7-3, C-3, C-9
time (T), 7-3, C-3
time of day (TOD), 7-3, C-3
user defined, 2-4
WORD, 7-3, C-3
word, C-2

Data view, 4-6
Date and time (DT)

format, C-10
range, C-9

Debugging, 3-23
Declaration table

for data blocks, 4-2
structure when creating a DB, 4-5
syntax check, 4-5

Declaration type
changing, 3-8
meaning, 3-7

Declaration view, 4-5
DI_BCD. See Double Integer to BCD

conversion instruction
DI_REAL. See Double Integer to Real

conversion instruction
DIV_DI. See Divide Double Integer math

instruction
DIV_I. See Divide Integer math instruction
DIV_R. See Divide Real floating-point math

instruction
Divide Double Integer (DIV_DI) math

instruction, 11-9–11-10
Divide Integer (DIV_I) math instruction,

11-8–11-9
Divide Real (DIV_R) floating-point math

instruction, 12-6–12-7
Double integer (DINT), range, 7-3, C-3
Double Integer to BCD (DI_BCD) conversion

instruction, 14-8–14-9
Double Integer to Real (DI_REAL) conversion

instruction, 14-9–14-10
Double integers

comparing two, 13-3–13-4
format, C-4
range, C-4

Double word (DWORD)
data type, C-2
range, 7-3, C-3

Down Counter (S_CD) instruction, 10-7–10-8
Down Counter Coil ––(CD) instruction, 8-13
Downloading blocks, 2-6

Index

Index-5
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

E
Edge detection, 8-19–8-25
Edit, the variable declaration table, 4-5
Editing, variable declaration tables, 3-8
Editing during program execution, 2-7
Editor, settings for LAD, 3-3
Enable output (ENO). See Binary result
Enter Ladder logic elements, 3-19
Errors, binary coded decimal conversion

(BCDF), 14-4, 14-7
Examples, practical applications of instructions,

B-2–B-16
Exception Bit BR Memory ––| BR |––

instruction, 19-3
Exception Bit Overflow ––| OV |–– instruction,

19-7–19-8
Exception Bit Overflow Stored ––| OS |––

instruction, 19-9–19-10
Exception Bit Unordered ––| UO |–– instruction,

19-6–19-7
as related to floating-point math, 19-6–19-7

Exponential value, floating-point number, 12-12
Extended Pulse S5 Timer (S_PEXT), 9-7–9-8
Extended Pulse Timer Coil ––(SE) instruction,

8-15

F
Flipflop, 8-23–8-26
Floating-point math

Arc cosine (ACOS), 12-13–12-15
Arc sine (ASIN), 12-13–12-14
Arc tangent (ATAN), 12-13
as related to the Exception Bit Unordered ––|

UO |–– instruction, 19-6–19-7
Floating-point math instructions, 12-2–12-11

Add Real (ADD_R), 12-3–12-4
Divide Real (DIV_R), 12-6–12-7
Multiply Real (MUL_R), 12-5–12-6
Subtract Real (SUB_R), 12-4–12-5
valid ranges of results, 12-7

Floating–point numbers, data type for. See Real
number, data type

FLOOR. See Floor conversion instruction
Floor (FLOOR) conversion instruction,

14-18–14-19
Format

count value, 10-2
time value, 9-3

Function blocks (FBs), 2-2
calling FBs from a box, 20-4–20-6
supplying parameters, 20-6

Functions (FCs), 2-2
calling FCs from a box, 20-4–20-6
calling FCs with the Call FC/SFC from Coil

instruction, 20-2–20-3
supplying parameters, 20-6

I
I_BCD. See Integer to BCD conversion

instruction
I_DINT. See Integer to Double Integer

conversion instruction
Identification of symbols, 3-24
Information overview, iv
Initial value, with data blocks, 4-6
Initial values, 3-7
Instance data block (DI), 20-6
Instance data blocks, 4-2

creating, 4-4
Instruction browser, 3-19
Instructions

See also Operations
alphabetical listing, A-2–A-16

international full names with
international short names, A-2–A-4

international names with SIMATIC
equivalents, A-5–A-8

international short names and SIMATIC
short names, A-16

SIMATIC names with international
equivalents, A-12–A-15

SIMATIC names with international short
names, A-9–A-11

bit logic, 8-2–8-33
practical applications, B-3–B-6

comparison, practical applications,
B-11–B-12

counter, practical applications, B-11–B-12
dependent on the Master control Relay

(MCR), 20-8
floating-point math, 12-2–12-11

valid ranges of results, 12-7
integer math

practical applications, B-13–B-14
valid range for results, 11-11

practical applications, B-2–B-16
rotate, 16-10–16-13

Index

Index-6
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

shift, 16-2–16-13
shift and rotate, 16-2–16-18
status bit, 19-2–19-12
that evaluate the condition codes (CC 1 and

CC 0), 12-7
that evaluate the overflow bit (OV) of the

status word, 12-7
that evaluate the stored overflow bit (OS) of

the status word, 12-7
timer, practical applications, B-7–B-10
word logic, 15-2–15-14

practical applications, B-14–B-15
Integer (INT), range, 7-3, C-3
Integer math, valid range for results, 11-11
Integer math instructions

Add Double Integer (ADD_DI), 11-3–11-4
Add Integer (ADD_I), 11-2–11-3
Divide Double Integer (DIV_DI),

11-9–11-10
Divide Integer (DIV_I), 11-8–11-9
Multiply Double Integer (MUL_DI),

11-7–11-8
Multiply Integer (MUL_I), 11-6–11-7
practical applications, B-13–B-14
Return Fraction Double Integer (MOD_DI),

11-10–11-11
Subtract Double Integer (SUB_DI),

11-5–11-6
Subtract Integer (SUB_I), 11-4–11-5

Integer to BCD (I_BCD) conversion instruction,
14-5–14-6

Integer to Double Integer (I_DINT) conversion
instruction, 14-6–14-7

Integers
comparing two, 13-2–13-3
format, C-3

International full names for instructions,
alphabetical listing, with international short
names, A-2–A-4

International names of instructions, alphabetical
listing, with SIMATIC equivalents, A-5–A-8

INV_DI. See Ones Complement Double Integer
conversion instruction

INV_I. See Ones Complement Integer
conversion instruction

Invert Power Flow ––|NOT|–– instruction, 8-7

J
Jump ––(JMP) instruction, 18-3–18-4
Jump–If–Not ––(JMPN) instruction, 18-5

K
Know-how-protection, 5-3

L
Label, 18-6

as address of a jump (logic control)
instruction, 18-2

LAD. See Ladder Logic
Ladder, rules, 3-15
Ladder Logic (LAD), definition of, 1-1
Ladder program

status, possible settings, 5-6
testing, 5-5

Libraries, 3-20
Loading a count value

format, 10-2
range, 7-3, C-3

Loading a time value
format, 9-2
range, 7-3, C-3

Logarithm, natural, 12-11
Logic blocks

creating, 3-2
in the Incremental Editor, 3-2
structure, 3-2

Logic control instructions
Jump ––(JMP), 18-3–18-4
Jump–If–Not ––(JMPN), 18-5
label as address, 18-2

M
Master Control Relay (MCR)

dependency on, 20-8
effect on Set Coil ––(S) and Reset Coil

––(R) instructions, 20-8
Master Control Relay (MCR) instructions,

20-8–20-16
Master Control Relay Off ––(MCR>),

20-12–20-13
Master Control Relay On ––(MCR<),

20-12–20-13
nesting operations, 20-13

Master Control Relay Off ––(MCR>)
instruction, 20-12–20-13

Master Control Relay On ––(MCR<)
instruction, 20-12–20-13

Memory areas, counter, 10-2
Method of creating a DB, selecting, 4-4

Index

Index-7
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Midline Output ––(#)–– instruction, 8-6–8-7
MOD_DI. See Return Fraction Double Integer

math instruction
MOVE. See Assign a Value instruction
Move instructions, Assign a Value (MOVE),

14-2–14-3
MUL_DI. See Multiply Double Integer math

instruction
MUL_I. See Multiply Integer math instruction
MUL_R. See Multiply Real floating-point math

instruction
Multiple instances

calling, 3-10, 3-20
declaring, 3-10
rules for declaring, 3-10

Multiply Double Integer (MUL_DI) math
instruction, 11-7–11-8

Multiply Integer (MUL_I) math instruction,
11-6–11-7

Multiply Real (MUL_R) floating-point math
instruction, 12-5–12-6

N
Natural logarithm, floating-point number, 12-11
NEG. See Address Negative Edge Detection

instruction
NEG_DI. See Twos Complement Double

Integer conversion instruction
NEG_I. See Twos Complement Integer

conversion instruction
NEG_R. See Negate Real Number conversion

instruction
Negate Real Number (NEG_R) conversion

instruction, 14-14–14-15
Negative RLO Edge Detection ––(N)––

instruction, 8-20
Nesting operations, Master Control Relay

(MCR), 20-13
Network

inserting, 3-18
selecting, 3-18

Normally Closed Contact (Address) ––|/|––
instruction, 8-4–8-5

Normally Open Contact (Address) ––| |––
instruction, 8-3–8-4

Number format. See Number notation

Number notation, C-2–C-9
binary coded decimal (BCD), C-8
bit, C-2
byte, C-2
DATE AND TIME (DT), C-10
double integer, C-4
double word, C-2
floating-point, C-4–C-6
integer, C-3
real, C-4–C-6
S5 TIME, C-9
word, C-2

O
Off-Delay S5 Timer (S_OFFDT), 9-13–9-14
Off-Delay Timer Coil ––(SF) instruction, 8-18
On-Delay S5 Timer (S_ODT), 9-9–9-11
On-Delay Timer Coil ––(SD) instruction, 8-16
Ones Complement Double Integer (INV_DI)

conversion instruction, 14-11–14-12
Ones Complement Integer (INV_I) conversion

instruction, 14-10–14-11
Open, a block, 2-5
Operations. See Instructions
OR instruction, Ladder, 3-21
Order, blocks, 2-7
Organization blocks, 2-2
Output Coil ––() instruction, 8-5–8-6
Overflow (OV)

as affected by floating-point math
instructions, 12-7

Exception Bit Overflow ––| OV |––
instruction, 19-7–19-8

Overwrite mode, 3-26
Overwriting

addresses/parameters, 3-26
junctions in Ladder, 3-27
Ladder elements, 3-26

P
Parallel branch, 3-21

opening, 3-22
Parameter, entering in Ladder, 3-23

Index

Index-8
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

POS. See Address Positive Edge Detection
instruction

Positive RLO Edge Detection ––(P)––
instruction, 8-19

Power flow, inverting, 8-7
Program control instructions

Call FC/SFC from Coil ––(CALL),
20-2–20-3

Master Control Relay Off ––(MCR>),
20-12–20-13

Master Control Relay On ––(MCR<),
20-12–20-13

Return ––(RET), 20-7
Program status, 5-5

See also Test
selecting the call environment, 5-7
settings, 5-6
starting and stopping, 5-8

Programming, practical applications, B-2–B-16
Programming language, selection, 2-5
Pulse S5 Timer (S_PULSE), 9-5–9-6
Pulse Timer Coil ––(SP) instruction, 8-14–8-15

R
Real number

comparing two real numbers, 13-5–13-6
data type, 7-3, C-3
format, C-4–C-6
range, 7-3, C-3

Reinitialize, an actual value, 4-7
Reinitializing, 4-7
Repetition factor, 3-9
Reset Coil ––(R) instruction, 8-10
Reset Set Flipflop (RS) instruction, 8-24–8-25
Result Bit instructions, 19-4–19-5
Result of logic operation (RLO)

inverting, 8-7
negating, 8-7

Retentive On-Delay S5 Timer (S_ODTS),
9-11–9-12

Retentive On-Delay Timer Coil ––(SS)
instruction, 8-17

Return ––(RET) instruction, 20-7
Return Fraction Double Integer (MOD_DI)

math instruction, 11-10–11-11
ROL_DW. See Rotate Left Double Word

instruction
ROR_DW. See Rotate Right Double Word

instruction

Rotate instructions, 16-10–16-13
Rotate Left Double Word (ROL_DW),

16-10–16-11
Rotate Right Double Word (ROR_DW),

16-11–16-12
Rotate Left Double Word (ROL_DW)

instruction, 16-10–16-11
Rotate Right Double Word (ROR_DW)

instruction, 16-11–16-12
ROUND. See Round to Double Integer

conversion instruction
Round to Double Integer (ROUND) conversion

instruction, 14-15–14-16
RS. See Reset Set Flipflop instruction
Rules, Ladder, 3-15

S
S_AVERZ. See Off–Delay S5 Timer instruction,

SIMATIC short name
S_CD. See see Down Counter instruction
S_CU. See see Up Counter instruction
S_CUD. See Up-Down Counter instruction
S_EVERZ. See On–Delay S5 Timer instruction,

SIMATIC short name
S_IMPULS. See Pulse S5 Timer instruction,

SIMATIC short name
S_ODT. See On-Delay S5 Timer instruction
S_ODTS. See Retentive On-Delay S5 Timer

instruction
S_OFFDT. See Off-Delay S5 Timer instruction
S_PEXT. See Extended Pulse S5 Timer

instruction
S_PULSE. See Pulse S5 Timer instruction
S_SEVERZ. See Retentive On-Delay S5 Timer

instruction, SIMATIC short name
S_VIMP. See Extended Pulse S5 Timer

instruction, SIMATIC short name
S5 TIME

format, C-9
range, 7-3, C-3
time base, 9-2–9-3, C-9
time value, 9-2

Save RLO to BR Memory ––(SAVE)
instruction, 8-8

Saving blocks, 2-6
Scan time, 5-9
Selecting

in networks, 3-18
Ladder instructions, 3-18

Index

Index-9
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Set Coil ––(S) instruction, 8-9
Set Counter Value ––(SC) instruction, 8-11
Set Reset Flipflop (SR) instruction, 8-23–8-24
Setting

the Editor in LAD, 3-3
the Ladder program status, 5-6

Setting a counter value, 8-11
SFB, 2-4
SFC, 2-4
Shift and rotate instructions, 16-2–16-18
Shift instructions, 16-2–16-13

Shift Left Double Word (SHL_DW),
16-4–16-5

Shift Left Word (SHL_W), 16-2–16-3
Shift Right Double Integer (SHR_DI),

16-9–16-10
Shift Right Double Word (SHR_DW),

16-6–16-7
Shift Right Integer (SHR_I), 16-7–16-8
Shift Right Word (SHR_W), 16-5–16-6

Shift Left Double Word (SHL_DW) instruction,
16-4–16-5

Shift Left Word (SHL_W) instruction,
16-2–16-3

Shift Right Double Integer (SHR_DI)
instruction, 16-9–16-10

Shift Right Double Word (SHR_DW)
instruction, 16-6–16-7

Shift Right Integer (SHR_I) instruction,
16-7–16-8

Shift Right Word (SHR_W) instruction,
16-5–16-6

SHL_DW. See Shift Left Double Word
instruction

SHL_W. See Shift Left Word instruction
SHR_DI. See Shift Right Double Integer

instruction
SHR_DW. See Shift Right Double Word

instruction
SHR_I. See Shift Right Integer instruction
SHR_W. See Shift Right Word instruction
SIMATIC Manager, 2-4
SIMATIC names of instructions, alphabetical

listing
with international equivalents, A-12–A-15
with international short names, A-9–A-11

Splitting junctions, Ladder, 3-27
Square, floating-point number, 12-9–12-10
Square root, floating-point number, 12-9–12-10
SR. See Set Reset Flipflop instruction
Standard block, 5-3

Status bit instructions, 19-2–19-12
Exception Bit BR Memory ––| BR |––, 19-3
Exception Bit Overflow ––| OV |––,

19-7–19-8
Exception Bit Overflow Stored ––| OS |––,

19-9–19-10
Exception Bit Unordered ––| UO |––,

19-6–19-7
Result Bits, 19-4–19-5

Status word
binary result (BR) bit, 19-3
condition codes (CC 1 and CC 0) as related

to the Exception Bit Unordered
instruction, 19-6–19-7

condition codes (CC 1 and CC 0) as related
to the Result Bits instructions, 19-4–19-5

effect of calling an FB, FC, SFB, or SFC on
the bits of the status word, 20-4

invalid range for the result of integer math,
11-11

overflow bit, 19-7–19-8
status bit instructions, 19-2–19-12
stored overflow (OS) bit, 19-9–19-10
structure, 19-2
valid range for the result of integer math,

11-11
STL

Incremental Editor, 2-4
starting the Editor, 2-4

Stored overflow (OS)
as affected by floating-point math

instructions, 12-7
Exception Bit Overflow Stored ––| OS |––

instruction, 19-9–19-10
Structures, in the variable declaration table, 3-8
SUB_DI. See Subtract Double Integer math

instruction
SUB_I. See Subtract Integer math instruction
SUB_R. See Subtract Real floating-point math

instruction
Subtract Double Integer (SUB_DI) math

instruction, 11-5–11-6
Subtract Integer (SUB_I) math instruction,

11-4–11-5
Subtract Real (SUB_R) floating-point math

instruction, 12-4–12-5
Symbol information, 3-24
Symbol table, 3-24
Symbolic addressing, 3-24

practical example, B-3
Syntax check, 4-5

Index

Index-10
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

System function blocks. See SFB
System function blocks (SFBs)

calling SFBs from a box, 20-4–20-6
supplying parameters, 20-6

System functions. See SFC
System functions (SFCs)

calling SFCs from a box, 20-4–20-6
calling SFCs with the Call FC/SFC from

Coil instruction, 20-2–20-3
supplying parameters, 20-6

T
Test environment

laboratory, 5-8
process, 5-8
selecting, 5-8

Testing a Ladder program, 5-5
Time base, reading, 9-3
Time base for S5 TIME, 9-2–9-3, C-9
Time of day (TOD), range, 7-3, C-3
Time resolution. See Time base for S5 TIME
Time stamp conflict, 3-9
Time value

format in accumulator 1, 9-3
range, 9-2–9-3
reading, 9-3
syntax, 9-2

Timers
components, 9-2–9-3
instructions used with timers

Extended Pulse S5 Timer (S_PEXT),
9-7–9-8

Extended Pulse Timer Coil ––(SE), 8-15
Off-Delay S5 Timer (S_OFFDT),

9-13–9-14
Off-Delay Timer Coil ––(SF), 8-18
On-Delay S5 Timer (S_ODT), 9-9–9-11
On-Delay Timer Coil ––(SD), 8-16
practical applications, B-7–B-10
Pulse S5 Timer (S_PULSE), 9-5–9-6
Pulse Timer Coil ––(SP), 8-14–8-15
Retentive On-Delay S5 Timer

(S_ODTS), 9-11–9-12
Retentive On-Delay Timer Coil ––(SS),

8-17
location in memory, 9-2
number supported, 9-2
reading the time and the time base, 9-3
resolution. See Time base for S5 TIME
time base for S5 TIME, 9-2–9-3

time value, 9-2
range, 9-2–9-3
syntax, 9-2

types, overview, 9-4
Title

block title, 3-28
network title, 3-28

Trigger conditions, 5-7
Trigonometrical functions, angles, 12-13
TRUNC. See Truncate Double Integer Part

conversion instruction
Truncate Double Integer Part (TRUNC)

conversion instruction, 14-16–14-17
Twos Complement Double Integer (NEG_DI)

conversion instruction, 14-13–14-14
Twos Complement Integer (NEG_I) conversion

instruction, 14-12–14-13

U
UDT, 2-4

See also User defined data types
creating, 4-8
definition, 4-2
function, 4-8

Unlinked, 5-3
Up Counter (S_CU) instruction, 10-5–10-6
Up Counter Coil ––(CU) instruction, 8-12
Up-Down Counter (S_CUD) instruction,

10-3–10-4
User data type, 4-8

definition, 4-2
User program

creating, 2-4
structure, 2-2

User-defined data types. See UDT
User-defined data types (UDT), 2-4

V
Variable, 3-7
Variable declaration table, 3-2, 3-4, 3-6

editing, 3-8, 4-5
purpose, 3-6
structure, 3-6

W
WAND_DW. See (Word) And Double Word

instruction
WAND_W. See (Word) And Word instruction

Index

Index-11
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

WOR_DW. See (Word) Or Double Word
instruction

WOR_W. See (Word) Or Word instruction
WORD, range, 7-3, C-3
Word, data type, C-2
Word logic instructions, 15-2–15-14

(Word) And Double Word (WAND_DW),
15-4–15-5

(Word) And Word (WAND_W), 15-3–15-4
(Word) Exclusive Or Double Word

(WXOR_DW), 15-8–15-9
(Word) Exclusive Or Word (WXOR_W),

15-7–15-8
(Word) Or Double Word (WOR_DW),

15-6–15-7
(Word) Or Word (WOR_W), 15-5–15-6
practical applications, B-14–B-15

WXOR_DW. See (Word) Exclusive Or Double
Word instruction

WXOR_W. See (Word) Exclusive Or Word
instruction

Z
Z_RUECK. See Down Counter instruction,

SIMATIC short name
Z_VORW. See Up Counter instruction,

SIMATIC short name
ZAEHLER. See Up–Down Counter instruction,

SIMATIC short name

Index

Index-12
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Index

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 1✄

Siemens AG

AUT E 146

Östliche Rheinbrückenstr. 50

D–76181 Karlsruhe

Federal Republic of Germany

Please check any industry that applies to you:

❒ Automotive

❒ Chemical

❒ Electrical Machinery

❒ Food

❒ Instrument and Control

❒ Nonelectrical Machinery

❒ Petrochemical

❒ Pharmaceutical

❒ Plastic

❒ Pulp and Paper

❒ Textiles

❒ Transportation

❒ Other _ _ _ _ _ _ _ _ _ _ _

From:

Your Name:_ _

Your Title: _

Company Name: _

Street: _

City, Zip Code_ _

Country: _

Phone: _

2
Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Additional comments:

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

_ _

Remarks Form

Your comments and recommendations will help us to improve the quality and usefulness
of our publications. Please take the first available opportunity to fill out this questionnaire
and return it to Siemens.

Please give each of the following questions your own personal mark within the range
from 1 (very good) to 5 (poor).

1. Do the contents meet your requirements?

2. Is the information you need easy to find?

3. Is the text easy to understand?

4. Does the level of technical detail meet your requirements?

5. Please rate the quality of the graphics/tables:

	Title
	Preface
	Contents
	Part 1
	1 Product Overview
	2 Introduction
	2.1 Structure of User Programs
	2.2 Creating User Programs – Overview
	2.3 Rules to Observe

	3 Creating Logic Blocks
	3.1 Creating Logic Blocks – Overview
	3.2 Logic Blocks in the Editor
	3.3 Structure of the Variable Declaration Table
	3.4 Editing Variable Declaration Tables – Overview
	3.5 Declaring Multiple Instances
	3.6 Assigning System Attributes for Parameters
	3.7 Editing the Code Section – Overview
	3.8 Basic Guidelines for Entering Ladder Logic Instructions
	3.9 Entering Ladder Elements
	3.10 Creating Parallel Branches
	3.11 Editing Addresses and Parameters
	3.12 Symbolic Addressing
	3.13 Editing in the Overwrite Mode
	3.14 Entering Titles and Comments

	4 Creating Data Blocks and User-Defined Data Types
	4.1 Creating Data Blocks – Overview
	4.2 Selecting a Method
	4.3 Editing the Declaration Table
	4.4 Editing Actual Data Values
	4.5 Creating User-Defined Data Types (UDTs)

	5 Editing the Block Properties and Testing the Program
	5.1 Editing the Block Properties
	5.2 Testing your Ladder Program - Overview
	5.3 Setting the Program Status
	5.4 Setting the Trigger Conditions
	5.5 Choosing a Test Environment and Starting/Stopping the Program Status

	Part 2
	6 Configuration and Elements of Ladder Logic
	6.1 Elements and Boxes
	6.2 Boolean Logic and Truth Tables
	6.3 Significance of the CPU Registers in Instructions

	7 Addressing
	7.1 Overview
	7.2 Types of Addresses

	8 Bit Logic Instructions
	8.1 Overview
	8.2 Normally Open Contact
	8.3 Normally Closed Contact
	8.4 Output Coil
	8.5 Midline Output
	8.6 Invert Power Flow
	8.7 Save RLO to BR Memory
	8.8 Set Coil
	8.9 Reset Coil
	8.10 Set Counter Value
	8.11 Up Counter Coil
	8.12 Down Counter Coil
	8.13 Pulse Timer Coil
	8.14 Extended Pulse Timer Coil
	8.15 On-Delay Timer Coil
	8.16 Retentive On-Delay Timer Coil
	8.17 Off-Delay Timer Coil
	8.18 Positive RLO Edge Detection
	8.19 Negative RLO Edge Detection
	8.20 Address Positive Edge Detection
	8.21 Address Negative Edge Detection
	8.22 Set Reset Flipflop
	8.23 Reset Set Flipflop

	9 Timer Instructions
	9.1 Location of a Timer in Memory and Components of a Timer
	9.2 Choosing the Right Timer
	9.3 Pulse S5 Timer
	9.4 Extended Pulse S5 Timer
	9.5 On-Delay S5 Timer
	9.6 Retentive On-Delay S5 Timer
	9.7 Off-Delay S5 Timer

	10 Counter Instructions
	10.1 Location of a Counter in Memory and Components of a Counter
	10.2 Up-Down Counter
	10.3 Up Counter
	10.4 Down Counter

	11 Integer Math Instructions
	11.1 Add Integer
	11.2 Add Double Integer
	11.3 Subtract Integer
	11.4 Subtract Double Integer
	11.5 Multiply Integer
	11.6 Multiply Double Integer
	11.7 Divide Integer
	11.8 Divide Double Integer
	11.9 Return Fraction Double Integer
	11.10 Evaluating the Bits of the Status Word After Integer Math Instructions

	12 Floating-Point Math Instructions
	12.1 Overview
	12.2 Add Floating-Point Numbers
	12.3 Subtract Floating-Point Numbers
	12.4 Multiply Floating-Point Numbers
	12.5 Divide Floating-Point Numbers
	12.6 Evaluating the Bits of the Status Word After Floating-Point Instructions
	12.7 Establishing the Absolute Value of a Floating-Point Number
	12.8 Establishing the Square and/or the Square Root of a Floating-Point Number
	12.9 Establishing the Natural Logarithm of a Floating-Point Number
	12.10 Establishing the Exponential Value of a Floating-Point Number
	12.11 Establishing the Trigonometrical Functions of Angles as Floating-Point Numbers

	13 Comparison Instructions
	13.1 Compare Integer
	13.2 Compare Double Integer
	13.3 Compare Floating-Point Numbers

	14 Move and Conversion Instructions
	14.1 Assign a Value
	14.2 BCD to Integer
	14.3 Integer to BCD
	14.4 Integer to Double Integer
	14.5 BCD to Double Integer
	14.6 Double Integer to BCD
	14.7 Double Integer to Floating-Point Number
	14.8 Ones Complement Integer
	14.9 Ones Complement Double Integer
	14.10 Twos Complement Integer
	14.11 Twos Complement Double Integer
	14.12 Negate Floating-Point Number
	14.13 Round to Double Integer
	14.14 Truncate Double Integer Part
	14.15 Ceiling
	14.16 Floor

	15 Word Logic Instructions
	15.1 Overview
	15.2 WAnd Word
	15.3 WAnd Double Word
	15.4 WOr Word
	15.5 WOr Double Word
	15.6 WXOr Word
	15.7 WXOr Double Word

	16 Shift and Rotate Instructions
	16.1 Shift Instructions
	16.2 Rotate Instructions

	17 Data Block Instructions
	17.1 Open Data Block: DB or DI

	18 Jump Instructions
	18.1 Overview
	18.2 Jump in the Block If RLO = 1 (Unconditional Jump)
	18.3 Jump in the Block If RLO = 1 (Conditional Jump)
	18.4 Jump in the Block If RLO = 0 (Jump-If-Not)
	18.5 Label

	19 Status Bit Instructions
	19.1 Overview
	19.2 Exception Bit BR Memory
	19.3 Result Bits
	19.4 Exception Bits Unordered
	19.5 Exception Bit Overflow
	19.6 Exception Bit Overflow Stored

	20 Program Control Instructions
	20.1 Calling FCs/SFCs from Coil
	20.2 Calling FBs, FCs, SFBs, SFCs, and Multiple Instances
	20.3 Return
	20.4 Master Control Relay Instructions
	20.5 Master Control Relay Activate/Deactivate
	20.6 Master Control Relay On/Off

	Appendix
	A Alphabetical Listing of Instructions
	A.1 Listing with International Names
	A.2 Listing with International Names and SIMATIC Equivalents
	A.3 Listing with SIMATIC Names
	A.4 Listing with SIMATIC Names and International Equivalents
	A.5 Listing with International Short Names and SIMATIC Short Names

	B Programming Examples
	B.1 Overview
	B.2 Bit Logic Instructions
	B.3 Timer Instructions
	B.4 Counter and Comparison Instructions
	B.5 Integer Math Instructions
	B.6 Word Logic Instructions

	C Number Notation
	C.1 Number Notation

	D References
	Glossary
	A
	B
	C
	D
	F
	I
	K
	L
	M
	N
	O
	P
	R
	S
	U
	V

	Index
	Symbols
	A
	B
	C
	D
	E
	I
	F
	K
	L
	M
	J
	O
	N
	P
	S
	R
	T
	U
	V
	W
	Z

	Customer reply slip

