SIEMENS

SIMATIC

Ladder Logic (LAD)
for S7-300 and S7-400
Programming

Manual

C79000-G7076-C504-02

Preface, Contents

Part 1: Working with the
Ladder Editor

Part 2: Language Description

Appendix

Glossary, Index

Safety Guidelines

/N
/N
/N

Qualified Personnel

Correct Usage

/N

Trademarks

This manual contains notices which you should observe to ensure your own personal safety, as well as to
protect the product and connected equipment. These notices are highlighted in the manual by a warning
triangle and are marked as follows according to the level of danger:

Danger

indicates that death, severe personal injury or substantial property damage will result if proper precautions are
not taken.

Warning

indicates that death, severe personalinjury or substantial property damage can resultif proper precautions are
not taken.

Caution

indicates that minor personal injury or property damage can result if proper precautions are not taken.

Note

draws your attention to particularly importantinformation on the product, handling the product, or to a particular
part of the documentation.

The device/system may only be set up and operated in conjunction with this manual.

Only qualified personnel should be allowed to install and work on this equipment. Qualified persons are
defined as persons who are authorized to commission, to ground, and to tag circuits, equipment, and sys-
tems in accordance with established safety practices and standards.

Note the following:

Warning

This device and its components may only be used for the applications described in the catalog or the technical
description, and only in connection with devices or components from other manufacturers which have been
approved or recommended by Siemens.

This product can only function correctly and safely ifitis transported, stored, set up, and installed correctly, and
operated and maintained as recommended.

SIMATIC® and SINEC® are registered trademarks of SIEMENS AG.

Third parties using for their own purposes any other names in this document which refer to trademarks might
infringe upon the rights of the trademark owners.

Copyright © Siemens AG 1996 All rights reserved

The reproduction, transmission or use of this document or its contents is
not permitted without express written authority. Offenders will be liable for
damages. Allrights, including rights created by patentgrantor registration
of a utility model or design, are reserved.

Siemens AG

Automation Group

Industrial Automation Systems
Postfach 4848, D-90327 Niimnberg

Disclaimer of Liability

We have checked the contents of this manual for agreement with the
hardware and software described. Since deviations cannot be precluded
entirely, we cannot guarantee full agreement. However, the data in this
manual are reviewed regularly and any necessary correctionsincludedin
subsequent editions. Suggestions for improvement are welcomed.

© Siemens AG 1996
Technical data subject to change.

Siemens Aktiengesellschaft

C79000-G7076-C504

Preface

Purpose This manual is your guide to creating user programs in the Ladder Logic
(LAD) programming language. The manual explains the basic procedures for
creating programs. The online help contains more detailed information about
operating procedures.

This manual also includes a reference section that describes the syntax and
functions of the language elements of Ladder Diagram.

Audience The manual is intended for S7 programmers, operators, and
maintenance/service personnel. A working knowledge of automation
procedures is essential.

Scope of the This manual is valid for release 3.0 of the STEP 7 programming software
Manual package.

Compliance with LAD corresponds to the “Ladder Logic” language defined in the
Standards International Electrotechnical Commission’s standard IEC 1131-3. For

further details, refer to the table of standards in the STEP 7 file
NORM_TBL.WRI.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 1

Preface

Overview of the
STEP 7
Documentation

There is a wide range of both general and task-oriented user documentation
available to support you when configuring and programming an S7
programmable controller. The following descriptions and the figure below
will help you to find the user documentation you require.

This symbol indicates the order in which you should read the
manuals, especially as a first-time user of S7.

Symbol | Meaning

D This documentation introduces the methodology.

(I
L This is a reference manual on a specific topic.

D The documentation is supported by online help.

Primer S7-300 Programmable Controller

Quick Start

130/ Manuals on
S7-300/S7-400

Hardware

Manual

System Software for S7-300/S7-400
Program Design

/ Online Help

Standard Software for S7 and M7
STEP 7

Standard Software for S7

User Converting S5 Programs

Manual

User
Manual

1231/ 1230/

} STL } : LAD : } FBD } : scL :

\ || [| [|

22l syl | sl | e | P
| Referencel System Software for
IManual | S7-300/400

— —— > | | System and Standard

Functions

l GraPH | | Higrapn| !cFesfor | | 1235l

l'fors7 | | | | 57

| [| | |

sl | psal | jesa]

Language Packages

/xxx/: Number in the list of references

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Preface

Table 1-1

Summary of the Documentation

Title

Subject

S7-300 Programmable
Controller
Quick Start, Primer

The primer provides you with a very simple introduction to the methods of configuring

and programming an S7-300/400. It is particularly suitable for first-time users of
programmable logic controller.

an S7

S7-300/400 Program
Design
Programming Manual

The“S7-300/400 Program Designprogramming manual provides you with the bg
information you require about the structure of the operating system and a user ¢

for an S7 CPU. First-time users of an S7-300/400 should use this manual to get

sic
rogram
a basic

overview of programming methods on which to base the design of a user program.

S7-300/400 System and
Standard Functions
Reference Manual

The S7 CPUs have system functions and organization blocks integrated in the oﬂ)erating

system that can be used when programming. The manual provides you with an
overview of the system functions, organization blocks and loadable standard fu
available with an S7 programmable controller and contains detailed interface

descriptions explaining how to use the functions and blocks in your user progra

nctions

m.

STEP 7
User Manual

The“STEP 7” User Manualexplains the basic use and functions of the STEP 7
automation software. Whether you are a first-time user of STEP 7 or an experig
STEP 5 user, the manual will provide you with an overview of the procedures fo
configuring, programming and getting started with an S7-300/400 programmabl
controller. When working with the software, you can call up the online help whic|
supports you with information about specific details of the program.

nced

=%

> D

Converting S5 Programs
User Manual

You require thé¢Converting S5 Programs” User Manudl you want to convert
existing S5 programs and to run them on S7 CPUs. The manual explains how to
converter. The online help system provides more detailed information about usi
specific converter functions. The online help system also includes an interface
description of the available converted S7 functions.

use the
ng the

STL, LAD, FBD, SCL1
Manuals

The manuals for the language packages STL, LAD, FBD, and SCL contain both
instructions for the user and a description of the language. To program an S7-3

D0/400,

you only require one of the languages, but you can, if required, mix the languages
within a project. When using one of the languages for the first time, it is advisable to

familiarize yourself with the methods of creating a program as explained in the m

When working with the software, you can use the online help system which pro
you with detailed information about using the editors and compilers.

anual.
ides

GRAPH!1 | HiGraph?,
CFc?
Manuals

The GRAPH, HiGraph, and CFC languages provide you with optional methods
implementing sequential control systems, status control systems, or graphical

or

interconnection of blocks. The manuals contain both the user instructions and the
description of the language. When using one of these languages for the first time, it is

advisable to familiarize yourself with the methods of creating a program based ¢
“S7-300 and S7-400 Program Desigmianual. When working with the software, y

n the
ou

can also use the online help system (with the exception of HiGraph) that provides you

with detailed information about using the editors and compilers.

1

Optional package for system software for S7-300/S7-400

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Preface

How to Use This
Manual

Conventions

Additional
Assistance

Notes on Using the
Manual

\Y

To use the LAD effectively, you should already be familiar with the theory
behind S7 programs. This is explained inBinegramming Manual234/.

The language packages also use the standard software for S7, so you you
should also be familiar with the standard software as describedliséne
Manual/231/

The manual is divided into the following parts:
e Part 1 introduces you to the use of Huitor.

e Part 2 explains all LAD operations and is intendede for reference
purposes.

¢ The glossary includes definitions of the basic terms.

¢ The index helps you find the relevant page on a subject of your choice.

References to other manuals and documentation are indicated by numbers in
slashes /.../. These numbers refer to the titles of manuals listed in Appendix
KEIN MERKER.

If you have any questions regarding the software described in this manual
and cannot find an answer here or in the online help, please contact the
Siemens representative in your area. You will find a list of addresses in the
Appendix of/70/ or A0Q, or in catalogs, and in Compuserge (

autforum) . You can also contact our Hotline under the following phone or
fax number:

Tel. (+49) (911) 895-7000 (Fax 7001)

If you have any questions or comments on this manual, please fill out the
remarks form at the end of the manual and return it to the address shown on
the form. We would be grateful if you could also take the time to answer the
questions giving your personal opinion of the manual.

Siemens also offers a number of training courses to introduce you to the
SIMATIC S7 automation system. Please contact your regional training center
or the central training center in Nuremberg, Germany for detalils:

D-90327 Nuremberg, Tel. (+49) (911) 895-3154.

The user’s guide sections in this manual do not describe procedures in
step-by-step detail, but simply outline basic procedures. You will find more
detailed information on the individual dialogs in the software and how to use
them in the online help.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Contents

Preface

Part 1: Working with the Ladder Editor

1 Product OVEIVIEW ... e e
2 INtrOdUCHION . o
21 Structure of User Programs ...

2.2 Creating User Programs — OVEeIVIEWiiiii i

23 Rulesto Observe

3 Creating Logic BIOCKS ... oo
3.1 Creating Logic BIOCKS — OVeIVIEWt

3.2 Logic Blocksinthe Editor

3.3 Structure of the Variable Declaration Table

3.4 Editing Variable Declaration Tables — Overview

3.5 Declaring Multiple InStances i

3.6 Assigning System Attributes for Parameters

3.7 Editing the Code Section — Overviewccoiiiiiiivennann..
Editable Parts of the Code Section

3.8 Basic Guidelines for Entering Ladder Logic Instructions

3.9 Entering Ladder Elements i

3.10 Creating Parallel Branches i

3.11 Editing Addresses and Parameters ...,

3.12 Symbolic Addressing

3.13 Editing in the Overwrite Mode e

3.14 Entering Titles and Comments i

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

w

BEERD

| —
2][] (2] [
~ N

@) [@
||
[edl I (=)

vii

Contents

viii

4 Creating Data Blocks and User-Defined Data Types —covivnann... 4-1:]
4.1 Creating Data Blocks —Overview ...
4.2 SelectingaMethod 4-/
4.3 Editing the Declaration Tablecooiiiiiieieanenn...
4.4 Editing Actual Data Values i
45 Creating User-Defined Data Types (UDTS)coeueuenann.. 4-8

5 Editing the Block Properties and Testing the Program 5-1 |:]
5.1 Editing the Block Properties i
5.2 Testing your Ladder Program - Overviewc.ccovuivnenn...
5.3 Setting the Program Statusoue et
5.4 Setting the Trigger Conditionsc.ovueiririeiennanan ..
55 Choosing a Test Environment and Starting/Stopping the Program Status 5-8

Part 2: Language Description

6 Configuration and Elements of Ladder Logic ~ 6-1|:]
6.1 Elementsand Boxeso
6.2 Boolean Logic and Truth TaDIESovive et 6-6
6.3 Significance of the CPU Registers in Instructions

7 AArESSING ..ottt
7.1 OV BIVIBW oot e 7-2
7.2 Types of AddreSSES ...t 7-/

8 Bit LOQIC INSIIUCHIONS 8-l]
8.1 OVEIVIEW .. ettt ettt ettt
8.2 Normally Open CONEACEttt e ettt e
8.3 Normally Closed CONtACEt
8.4 OULPUL COIl .. .ottt e e e e
8.5 MidliNe OUIPULottt et e e e e e e e e e 8-6
8.6 INVETt POWET FIOW . . .o\ttt e e e
8.7 Save RLOtO BRMEMOIY ...\ttt
8.8 SEECOIl . ..ot eee
8.9 Reset Coll 8-10
8.10 SetCounterValue 8-11
8.11 Up Counter Coilt e e e e 8-12
8.12 Down Counter Coilo 8-13
8.13 Pulse Timer Coil 8-14
8.14 Extended Pulse Timer Coil i 8-15

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Contents

8.15 On-Delay Timer Coil i e
8.16 Retentive On-Delay Timer Coilt
8.17 Off-Delay Timer Coilo e
8.18 Positive RLO Edge Detection,
8.19 Negative RLO Edge Detectioncco it
8.20 Address Positive Edge Detectionc i
8.21 Address Negative Edge Detection ...,
8.22 SetResetFlipflop ...
8.23 Reset SetFlipflop ...
9 TIMEr INSIIUCHIONS . oot e e e e
9.1 Location of a Timer in Memory and Components of a Timer
9.2 Choosing the Right Timer i e
9.3 Pulse S5 Timer
9.4 Extended Pulse S5 TIMer
9.5 On-Delay S5 TIMero
9.6 Retentive On-Delay S5 TIMer i
9.7 Off-Delay S5 Timer e e
10 Counter INStrUCHIONS . ..ot e e e
10.1 Location of a Counter in Memory and Components of a Counter
10.2 Up-Down COUNtEr e e e
10.3 UP COUNLEN . .
10.4 DOWN COUNTEE et e
11 Integer Math INStruCtions
111 Add INnteger ...
11.2 Add Double Integer e
11.3 Subtract Integer
11.4 Subtract Double Integer
115 Multiply Integer
11.6 Multiply Double Integer
11.7 Divide INtegero
11.8 Divide Double Integero
11.9 Return Fraction Double Integer i
11.10 Evaluating the Bits of the Status Word After Integer Math Instructions . ..

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

11-11

Contents

12

13

14

Floating-Point Math INStructions s 12
12.1 OVBIVIBW et 12-2
12.2 Add Floating-Point Numbers o i 12-3
12.3 Subtract Floating-Point Numbers i, 12-4
12.4 Multiply Floating-Point Numbers 12-5
125 Divide Floating-Point Numbers 12-6
12.6 Evaluating the Bits of the Status Word After Floating-Point Instructions .. [12-7
12.7 Establishing the Absolute Value of a Floating-Point Number 12-8
12.8 Establishing the Square and/or the Square Root of a

Floating-Point Number i e 12-9
12.9 Establishing the Natural Logarithm of a Floating-Point Number 12-11
12.10 Establishing the Exponential Value of a Floating-Point Number 12-12
12.11 Establishing the Trigonometrical Functions of Angles as Floating-Point

NUMDEIS . .. 12-13
Comparison INStrUCtiONS o 13-1 |
131 Compare INtEger 13-2
13.2 Compare Double Integero e 13-3
13.3 Compare Floating-Point Numbers 13-5
Move and Conversion INStructions ... 14
141 AssignaValue 14-2
14.2 BCDtoINteger 14-4
14.3 INtegerto BCD 14-5
14.4 Integer to Double Integer 14-6
14.5 BCDto Double Integer 14-7
14.6 Double Integerto BCDot 14-8
14.7 Double Integer to Floating-Point Number 14-9
14.8 Ones Complement INntegert 14-10
14.9 Ones Complement Double Integer 14-11
14.10 Twos Complement Integerot 14-12
14.11 Twos Complement Double Integer 14-13
14.12 Negate Floating-Point Number 14-14
14.13 Round to Double Integer 14-15
14.14 Truncate Double Integer Part i 14-16
14.15 CelliNg ..o 14-17
14.16 FlOOr . 14-18

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Contents

15

16

17

18

19

20

WOrd LOGIC INSHIUCHONS .+ v e et et e e e e e e e e e e e 159-1 |
151 OV BIVIBW ettt e e 15-2
15.2 WANA WOKd ..o 15-3
15.3 WANd Double Word 15-4
154 WOIr WOrd ..o 15-5
155 WOr Double Word 15-6
15.6 WXOrWOrd ... e 15-7
15.7 WXOr Double Word 15-8
Shift and Rotate INStrUCLIONS .. oo e e et 16-1 |
16.1 Shift INSIIUCLIONSo 16-2
16.2 Rotate INStruCtionso 16-10
Data BIOCK INSITUCLIONS . ..\ttt e et et e e e e e 1
171 Open Data Block: DB Or DIo i 17-2
JUMP INSITUCHIONS . oo e e e 18-1

18.1 OVBIVIBW e e e e e e e 18-2
18.2 Jump in the Block If RLO = 1 (Unconditional Jump) 18-3
18.3 Jump in the Block If RLO = 1 (Conditional Jump) 18-4
18.4 Jump in the Block If RLO =0 (Jump-If-Not) 18-5
18.5 Label 18-6
Status Bit INSUCHONS ..o e et e e e e e e e e 19-1 |
19.1 OV BIVIBW oottt e e 19-2
19.2 Exception BE BR MEMOIYttt 19-3
19.3 RESUIt BItS .o 19-4
194 Exception Bits Unordered 19-6
195 Exception Bit Overflow 19-7
19.6 Exception Bit Overflow Stored i, 19-9
Program Control INStrUCtionsS 20t1 |
20.1 Calling FCs/SFCsfrom Coil i 20-2
20.2 Calling FBs, FCs, SFBs, SFCs, and Multiple Instances 20-4
20.3 REIUMN . 20-7
20.4 Master Control Relay Instructions 20-8
20.5 Master Control Relay Activate/Deactivate 20-9
20.6 Master Control Relay On/Off 20-12

Ladder Logic (LAD) for S7-300 and S7-400 .
C79000-G7076-C504-02 XI

Contents

Appendix

A Alphabetical Listing of InStructions ... A—1|:|
Al Listing with International Names
A.2 Listing with International Names and SIMATIC Equivalents
A3 Listing with SIMATIC NaMESottt la-d
A4 Listing with SIMATIC Names and International Equivalents A-12
A5 Listing with International Short Names and SIMATIC Short Names A-16

B Programming Examples B
B.1 OVEIVIBW
B.2 Bit LOGIC INStrUCtions i
B.3 Timer INStructions
B.4 Counter and Comparison INStructionsot B-11
B.5 Integer Math INStructions i i B-13
B.6 Word Logic INStrUCtioNSot B-14

C NUMDBEr NOtAtION ...ttt e e e e et -1 |
c1 Number NOtation it c-2

21 References
GOSNy .ttt
NOEX .t Index-1

. Ladder Logic (LAD) for S7-300 and S7-400
Xl C79000-G7076-C504-02

Part 1:
Working with the
Ladder Editor

Product Overview

Introduction

Creating Logic Blocks

Creating Data Blocks and
User Data Types

Editing the Block Properties
and Testing the Program

a A~ W N

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Product Overview 1

What is LAD?

The Programming
Language Ladder
Logic

The Programming
Package

LAD stands for Ladder Logic. LAD is a graphic programming language. The
syntax of the instructions is similar to a circuit diagram. With Ladder Logic,
you can follow the signal flow between power rails via inputs, outputs, and
instructions.

The programming language Ladder Logic has all the necessary elements for
creating a complete user program. It contains the complete range of basic
instructions and a wide range of addresses are available. Functions and
function blocks allow you to structure your LAD program clearly.

TheLAD Programming Package is an integral part of the STEP 7 Standard
Software. This means that following the installation of your STEP 7 software,
all theeditor functions, compiler functions, and test/debug functions for LAD
are available to you.

Using LAD, you can create your own user program with the Incremental
Editor. The input of the local block data structure is made easier with the
help of table editors.

There are three programming languages in the standard software, STL, FBD,
and LAD. You can switch from one language to the other almost without
restriction and choose the most suitable language for the particular block you
are programming.

If you write programs in LAD or FBD, you can always switch over to the
STL representation. If you convert LAD programs into FBD programs and
vice versa, program elements that cannot be represented in the destination
language are displayed in STL.

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

1-1

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Introduction 2

In This Chapter This chapter is a brief description of the structure of a user program
consisting of blocks.

The LAD Editor runs on the platform of the SIMATIC Manager which
underlies all STEP 7 applications. This chapter explains how to change from
the SIMATIC Manager to the LAD Editor and how the created blocks fit into
the project structure.

Chapter Overview Section Description Page
21 Structure of User Programs
2.2 Creating User Programs - Overview 2-4
2.3 Rules to Observe

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 2-1

Introduction

2.1 Structure of User Programs

Logic Blocks and A user program consists of logic blocks and data blocks. Logic blocks are

Data Blocks blocks with a code section such as organization blocks, function blocks, or
functions.

Organization Organization blocks (OBs) form the interface between the operating system

Blocks and the user program. Different organization blocks have different functions.

To create the LAD user program for your S7 CPU, you select the
organization blocks necessary for your specific automation task. For the most
basic task you will require the following:

e Startup (OB100, OB101)
e Scan cycle (OB1)

e Error handling (OB80 to OB87, OB121, OB122), if you do not want your
CPU to switch to STOP when an error occurs.

There are also organization blocks available to handle interrupts in the CPU
or other interrupts from the process.

For detailed information about the functions of each organization block and
the startup information provided by the CPU operating system, refer to the

ReferencéManual/235/
Functions/ You can program every organization block as a structured program by
Function Blocks creating functions (FCs) and function blocks (FBs) and calling them in the

code section. When the blocks are called, you supply the data required for
the declared parameters.

¢ A function block (FB) is a logic block with “memory”. This memory
takes the form of instance data blocks assigned to the FB. The instance
DBs store all the actual parameters and static data relating to the function
block.

e Afunction (FC) is a logic block without “memory”, in other words
without associated instance DBs. After an FC has been processed, the
output parameters contain the calculated function values. Once the
function has been called, the user decides how the actual parameters are
used and stored.

Data The operating system makes the following data available:
e Peripheral I/Os
* Process image input/output
¢ Bit memory
* Timers

e Counters

Ladder Logic (LAD) for S7-300 and S7-400
2-2 C79000-G7076-C504-02

Introduction

Data Blocks

Additional
Information

You can also define your own data:

You can define shared data in data blocks. This data is accessible to the
entire user program.

You can define static variables. These are only valid in the function block
within which they are defined. Every time an FB is called, an instance
data block is specified which includes all parameters and the static data.
In the case of multiple instances, the instance and static data are
incorporated in the instance data block.

You can define temporary data when you create logic blocks. This data
only requires stack memory during the actual processing of the block.

Data blocks store the data of the user program. There are two types of data
blocks: shared data blocks and instance data blocks.

Shared DBs can be accessed by all the blocks in the program.

Instance data blocks are assigned to a function block and contain not only
the data of the function block but also the data of any defined multiple
instances. For this reason, you should only access an instance data block
in connection with its own specific function block.

TheProgramming Manual234/contains an introduction to programming
methods.

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

2-3

Introduction

2.2 Creating User Programs — Overview

User Program A user program that runs on an S7 CPU is essentially made up of blocks. It
also contains information such as data about the system configuration and
about system networking. Depending on your application, the user program
will include the following elements:

¢ Organization blocks (OBs)
¢ Function blocks (FBs)

¢ Functions (FCs)

¢ Data blocks (DBs)

To simplify your work, you can create your own user-defined data types
(UDTs), which can be used either as data types in their own right or as a
template for creating data blocks.

Some of the frequently used blocks such as the system function blocks

(SFBs) and the system functions (SFCs) are integrated on the CPU. Other
blocks (for example blocks for IEC functions or closed-loop controller

blocks) are available as separate packages. You do not need to program these
blocks but simply load them into your user program.

Note

You can check which SFBs and SFCs are integrated on your CPU online by
clicking PLC » Module Information... in the menu bar.

LAD Incremental The STEP 7 standard software includes an editor for programming blocks.

Editor The editor can be set to the LAD programming languagdiow you to
program logic blocks (OBs, FBs, FCs). Th&D Editor works incrementally,
which means that the syntax of each entry you make is checked. Syntax
errors are reported and illegal arrangements of LAD elements or addresses
are rejected immediately.

Starting from the TheLAD Editor is started from the SIMATIC Manager. You must first create

SIMATIC Manager a project containing an S7 program in the SIMATIC Manager before you can
call the editor. The program you create can be either dependent or
independent of the hardware. You either add the S7 program directly into the
project or edit the S7 program assigned to the programmable module. The
program itself can contain the user program (blocks), source files, or charts.

With the LAD Editor, you can only edit blocks stored in the folder of the user
program.

Ladder Logic (LAD) for S7-300 and S7-400
2-4 C79000-G7076-C504-02

Introduction

Creating a Block

Choosing a
Programming
Language

Opening a Block

Ed SIMATIC Manager — TRAFFIC HE

File Edit Insert PLC View Options Window Help

D] of 4[ale] el mlm| nli= @he] |

@\ Ed TRAFFIC - <Offline> (Project) HE =
j

ﬂ = & TRAFFIC

= S7 Program (1)
‘ - -[B1 Source Files

AEE==1 Blocks

- - W SIMATIC 300 Stationl

Press F1 for help

[Inom [7

Figure 2-1 Starting the LAD Editor from the SIMATIC Manager

To create a block for the first time, you first create an empty block in the
SIMATIC Manager with which you can then open the Editor. Once you have

opened the LAD Editor you can then create further blocks.

* Inthe SIMATIC Manager you can select the “Blocks” folder and insert
the block type you want by selectisert » S7 Block» The new
block appears on the right hand side of the project window.

e Once you are in the editor, you can create a block by seldttawg
New: In the dialog box that follows you are prompted to specify the block

type and number you require.

When you create a block, you also select the programming language you
want to use. The corresponding editor is then activated based on this
selection. To program ibAD, select “LAD” as the working language.

You can open a block in the SIMATIC Manager by double-clicking the block.
Alternatively, you can open it by either selecting the menu command
Edit » Open Objector by clicking the corresponding button in the toolbar.

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

2-5

Introduction

Saving and
Downloading
Blocks

Calling Supporting
Functions

2-6

When you save a block in the Editor, remember the following points:

¢ File » Savealways saves the block in the “Blocks” folder on the hard disk
of your programming device/PC.

e PLC » Download downloads the opened block to the CPU.

After creating the blocks for your user program, download them to the S7
CPU in your SIMATIC Manager. For further information about downloading
user programs, refer to thiser Manual231/.

Note

It is not always sufficient to download the created blocks individually to the
CPU because data from the system configuration may sometimes be
required. You should therefore download the complete program in the
SIMATIC Manager.

TheLAD Editor has the following functions which you will find useful when
creating programs and starting up.

Table 2-1 Supporting Functions in the LAD Editor

Function Menu Command

Call reference data of the active uspOptions» Reference Data
programs

Edit the symbol table / individual | Options» Symbol Table /

symbols Options» Edit Symbols
Monitor / modify variables PLC » Monitor/Modify Variables
Display / modify operating mode or| PLC » Operating Mode or
memory reset on the CPU PLC » Clear/Reset

Display the status of the selected | PLC » Module Information
module

Set the time and date on the CPU | PLC » Set Time and Date

These functions are described in detail inltlser Manual231/.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Introduction

2.3 Rules to Observe

Order of Creating
Blocks

Editing during
Program
Execution

/N

The order in which you create logic blocks and data blocks in a user program
is important. As a ruldf blocks are called within other blocks, the called
blocks must already exist before you program their callsEntering a
non-existent block as a Ladder element (box) is not possible. If you program
a call for a non-existent block using CALL, an error is reported when you
save the program because the called block cannot be found.

With STEP 7 you can edit a user program stored on the CPU online while the
CPU is in the RUN mode.

Warning

If you make online modifications to a program while it is running, this can
lead to malfunctions and unforeseen reactions in your plant or process that
could cause injury to persons or damage to equipment.

If the CPU is switched online and is in the RUN mode, modifying the user
program stored on the CPU can cause situations in which machines and
devices are suddenly turned on or off, potentially causing injury to persons
or damage to equipment.

Always plan the sequence of events in your process in accordance with the
pertinent safety regulations. Never attempt to make online modifications to a
program while it is running without having first considered the consequences
and taking appropriate action to prevent accidents.

Note

For information about working online and offline, refer to theer Manual
1231/,

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

2-7

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Creating Logic Blocks

In This Chapter

Chapter Overview

A user program cannot exist without logic blocks. In many situations, you
can use the blocks integrated on the CPU or the available standard function
blocks. You will, however, always have to create a number of logic blocks
yourself. This chapter describes how to create blocks using the LAD Editor.

Section Description Page
3.1 Creating Logic Blocks — Overview
3.2 Logic Blocks in the Editor
3.3 Structure of the Variable Declaration Table
3.4 Editing Variable Declaration Tables — Overview
3.5 Declaring Multiple Instances
3.6 Assigning System Attributes for Parameters
3.7 Editing the Code Section — Overview 3-1
3.8 Basic Guidelines for Entering Ladder Logic Instructions| 3-1
3.9 Entering Ladder Elements 13-18
3.10 Creating Parallel Branches 3-2
3.11 Editing Addresses and Parameters
3.12 Symbolic Addressing [3-24
3.13 Editing in Overwrite Mode
3.14 Entering Titles and Comments 3-2

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

3-1

Creating Logic Blocks

3.1 Creating Logic Blocks — Overview

Logic Blocks

Editing a Logic
Block

3-2

Logic blocks (OBs, FBs, FCs) are made up of a variable declaration section
and a code section. They also have certain properties. When programming,
you must edit the following three sections:

Variable declaration table: In the variable declaration table, you declare
the parameters, the system attributes for parameters, and the local
variables of your block.

Code section:In the code section, you program the block code that is to
be executed by the programmable controller. This consists of one or more
networks with Ladder elements.

Block properties: The block properties include additional information,
such as a time stamp and a path name, which is entered by the system
itself. In addition to these items you can enter further details about the
name, family, release and author and can assign system attributes for
blocks (see Chaptkl 5).

The order in which you edit the three sections is irrelevant and you can, of
course, make corrections and additions.

When you refer to symbols from the symbol table, you should make sure that
they are complete and, when necessary, add any missing information.

Create a logic block (FB, FC or OB)
in the SIMATIC Manager.

LAD Editor

Make the settings for the editor

!

Edit the variable declaration table
for the Iblock

!

Edit the code section

'

Enter the block properties

!

Save the block

|

Figure 3-1 Procedure for Creating Logic Blocks in LAD

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Creating Logic Blocks

3.2 Logic Blocks in the Editor

Overview

Settings in the
Editor

Settings for LAD

Before you start programming in the LAD Editor, you should familiarize
yourself with the various ways in which you can customize the editor to suit
your preferences and method of working.

With the menu comman@ptions » Customize you can open a tabbed page
dialog box. In the “Editor” tabbed page, you can make the following basic
settings for block programming:

e Font (type style, size) used in text and tables

* The programming language of your choice (FBD, LADS®L). A new
block will be opened in FBD, LAD, @8TL depending on the
programming language you select. Bearing in mind certain restrictions,
you can switch to one of the other languages later on and still view the
block.

¢ Display of symbols and comment in the new block (on or off)

The settings for language, comment and symbols can be altered at any time
during editing by using the commands in Yiew " ... menu.

In the “LAD/FBD” tabbed page, which you also display wixptions »
Customize you can make the following basic settings:

e Ladder Layout determines the display size of your networks. The
selected size decides how many LAD elements you can position next to
each other in one network. This setting also has effects when printing out
the block.

¢ Width of Address Field: determines the width of text fields for addresses.
If the width is exceeded, a line break is made. A large address field is
more practical for symbolic addressing, a small field is sufficient for
absolute addressing.

e Line/Color for. the selected element, contact, status fulfilled, status not
fulfilled

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

3-3

Creating Logic Blocks

Main Window of
the LAD Editor

Relationship
between the
Variable
Declaration and
Code Section

3-4

When you open a logic block, a window appears displaying the following:
¢ Thevariable declaration table of the block in the upper part

¢ Thecode sectiorin the lower part, in which you edit the actual block
code

E FB6-<Offline>-LAD/STL/FBD: Programming S7 Blocks
File Edit Insert PLC Debug View Options Window Help

2B JHAHH S 2] 2]

gm| 1<|>!

0] 5] <[4[] oz

® FB6-<Offline> HE

dur_g_p S5TIME S5T#0MS
2.0 in del_r_p S5TIME S5T#0MS
4.0 in starter BOOL FALSE
6.0 in t dur_y car TIMER
i t_dur_g_ped TIMER J

NEICICEN: Red for road traffic m
#starter #t_next_red_car #t_dur_r_car #condition
it ()
I {
#condition
||

]
Network 2 : Green for road traffic
#condition #g car
| A ()
VI \

Network 3 : Start permanent amber for cars
#condition #g car
{ (sE

CETH2C

v
v

7

< |

Figure 3-2 Variable Declaration Table and Code Section in LAD

Theblock properties are edited in their own dialog (see Chapler 5).

The editor allows you enables you to open and work on several blocks
simultaneously.

The variable declaration table and the code section are closely linked as the
names from the variable declaration table are used in the code section. This
means that changes in the variable declaration table also affect the code
section and therefore the entire block.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Creating Logic Blocks

Table 3-1 Relationship between Variab

le Declaration and Code Section

Action in the Variable Declaration

Reaction in the Code Section

New correct entry

If invalid code exists, previously
undeclared variable becomes valig

Correct name change without type change

Symbol is immediately shown
everywhere with new name

Correct name is changed to an invalid nam

eCode is not changed

Invalid name is changed to a correct name

If invalid code exists, it becomes
valid

Type change

If invalid code exists, it becomes
valid and if valid code exists, it
becomes invalid

Symbol deleted that is being used in the cod¢alid code becomes invalid

Comment change None
Incorrect entry of a new variable None
Deleting an unused variable None
Initial value change None

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

3-5

Creating Logic Blocks

3.3 Structure of the Variable Declaration Table

Overview

Structure of the
Variable
Declaration Table

3-6

In the variable declaration table, you set the local variables including the
formal parameters of the block and the system attributes for parameters. This
has (among other things) the following effects:

¢ As aresult of the declaration, memory is reserved in the local data stack
or instance data block.

By setting the input, output, and in/out parameters you also define the
“interface” for calling a block in the program.

¢ Declaring variables in a function block provides the data structure for any
instance data block that you associate with the function block.

By setting system attributes, you assign special properties to parameters
for message and connection configuration, operator interface functions
and process control configuration.

After opening a new logic block, a default variable declaration table is
displayed on the screen. This lists all the permitted declaration types for the
specific block (in, out, in_out, stat, temp) in the appropriate order.

When creating a new OB, a standard variable declaration is displayed in
which you can change the values.

The variable declaration table contains entries for the address, declaration,
symbolic name, data type, initial value, and comment for the variables. Each
table row represents a variable declaration. Variables of the data type array or
structure require more than one row.

@ TRAFFIC\..\FB40 - <Offline> ||
[Address Toec. Symbol DataType iniiiValue Commenf |

0.0 | in ein BOOL FALSE Light on

01 |in start P-| BOOL FALSE Switch

2.0 out Motor BOOL FALSE Motor

2.1 out Message BOOL FALSE Motor

4.0 in_out in_outpl INT 0

6.0 | in_out in_outp2 INT 0

Figure 3-3 Example of a Variable Declaration Table

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Creating Logic Blocks

Meaning of the

The columns in the variable declaration table are interpreted as follows:

Columns
Table 3-2 Columns of the Variable Declaration Table
Column Meaning Remarks Editing
Address Address in format BYTE.BIT In the case of data types which require mp8ystem entry:
than one byte, the address indicates this itie address is
a jump to the next byte address. assigned and
Key: displayed by
* : Size of an array element in bytes the system afte
+ : Initial address, ref. to the structure staryou have
= : Total memory requirement of a structyrénished
entering your
declaration.
Decl. Declaration type “Purpose” of theg The following are possible depending on| Default settingg
variables block type: according to
Input parameters “in” block type
Output parameters “out”
In/out parameters “in_out”
Static variables “stat”
Temporary variables “temp”
Symbol Symbolic nhame of variables The name must begin with a letter. Resery&thndatory
keywords are not permitted.
Data Type | Data type of the variable Basic data types can be selected in the meviandatory
(BOOL, INT, WORD, ARRAY with the right mouse button.
etc.)
Initial Value | Initial value, when the software | Must be compatible with the data type. | Optional
should not assume a default valueUnless a specific actual value has been
selected, the initial value is used as the
actual value of the variable when editing @
DB for the first time.
Comment Comment on documentation Optional

Meaning of the
“Golf Flag”

Altering the
Column Width

If you have assigned system attributes to a variable, a symbol resembling a
golf flag appears in the “Symbol” column (see Figure 3-3). Double-click the
flag to open the “System Attributes” dialog box.

You can vary the width of the columns. Position the mouse pointer between
two columns and holding the left mouse button pressed move the mouse
horizontally. As an alternative, you can alter the width of the column using
the menu commandiew » Column Width... having previously selected the
table. This allows you to minimize the optional comment and initial value
columns and focus solely on the remaining columns.

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

3-7

Creating Logic Blocks

3.4 Editing Variable Declaration Tables — Overview

Procedure

Editing Functions

Changing the
Declaration Type

Entering
Structures

3-8

After you have entered the required declaration type of a new declaration,
enter the name of the variables, the data type, the initial value (optional) and
the comment (optional). You can move the cursor to the next field with the
TAB key. At the end of a row an address will be assigned to the variable
automatically.

After each table field has been edited, its syntax is checked and any errors
are displayed in red. At this point, you can continue editing the table and
postpone the correction of errors to a later stage.

All the usual functions in thEdit menu are available to you when editing a
table. Using the context-sensitive right mouse button makes editing easier.

The menu displayed with the right mouse button also helps you to enter the
data type. The “Data Type” menu includes all elementary data types.

You can select single rows by clicking the write-protected address cell. You
can also select several rows of the same declaration type by holding down the
SHIFT key. The selected rows appear on a black background.

The “Decl.” column is read-only. The declaration type is determined by the
position of the declaration within the table. This ensures that variables can
only be entered in the correct order of their declaration typgsu want to
change the declaration type of a declaration, cut the declaration first and then
paste it under the new declaration type.

If you want to enter a structure as a variable, enter the name in the “Symbol”
column and the keywor8TRUCTn the data type column. Press either the
TAB or theRETURN key to insert an empty row plus a final row
(END_STRUCT) for the structure. In the empty row, enter the elements of
the structure by entering its name, data type and its initial value (optional).
You can create more rows and insert further elements using either the menu
commands or by pressiRETURN.

If you want to select a structure, click the address or declaration cell of the
first or last row of the structure (containing the keyw8T&RUCT or
END_STRUCT. You can select individual declarations within a structure by
clicking the address cell in the relevant row.

If you want to enter a structure within another structure, the hierarchy is
indicated by the indented variable names.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Creating Logic Blocks

Entering Arrays To enter an array as a data type, enter the name in the “Symbol” column and
the keyword ARRAY in the cell for the data type together with the array size,
for example array [1..20, 3..24] for a two-dimensional array. Pre§a\the
key (if necessary, more than once) to insert a row in which you can enter the
data type of the array.

If you want to select an array, click the address cell in the relevant row.

Initial values for each array element can be entered singly or with a repetition
factor (see Figure 3-4):

* Individual entry: You assign each element its own initial value. The
values are separated by commas.

Repetition factor: The same initial value can be assigned to several
elements. The value itself is shown in parentheses and is preceded by the
repetition factor which defines the number of elements.

Example Figure 3-4 shows an example of a variable declaration table:
(Address |Decl. Symbol DataType Initiplvalue Commert %

0.0 | in structurl STRUCT —

+0.0 | in arl BOOL FALSE

+2.0 | in var2 INT 0

+4.0 | in ar3 WORD WHL6#0

=6.0 | in END_STRUCT
6.0 | in arrayl ARRAY[1..20,1..40] TRUE

*2.0 in BOOL ﬂ

Figure 3-4 Structures and Arrays in a Variable Declaration Table

Note

If you make changes to the variable declaration of blocks whose calls you
have already programmed, time stamp conflicts may occur. You should
therefore first program all blocks to be called, and then program the blocks
that call them. In the case of function blocks, instance DBs should also be
re-created.

When making changes to a UDT which was entered as a data type in a
variable declaration, check the variable declaration of the block and then
save it again.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 3-9

Creating Logic Blocks

3.5 Declaring Multiple Instances

Multiple Instances A multiple instance results from declaring a static variable of the same data
type as a function block (FB). In the code section, the instance is called as a
Ladder element.

For more detailed information about multiple instances, refer to the
Programming Manual234/. Part 2 of this manual explains the syntax for
calling a multiple instance.

Rules Keep to the following rules when declaring multiple instances:
¢ Declaring multiple instances is only possible in function blocks

¢ Function blocks within which a multiple instance has been declared must
also have an associated instance DB.

¢ A multiple instance can only be declared as a static variable (declaration

type “stat”).
Inputting Multiple To declare a multiple instance, you enter the variable name in the “Symbol”
Instances column after the declaration type “stat”. Under data type, you enter the

function block. This can be done either by entering the absolute nhame of the
FB or a symbolic name. You can also add an optional comment.

B TRAFFIC\..\FB60-<Offline> H=

varin B#16#0

2.0 out varout BYTE B#16#0

varinout BYTE B#16#0

locinst FB6 local instance

Figure 3-5 Declaration of Multiple Instances (Example)

<]

Ladder Logic (LAD) for S7-300 and S7-400
3-10 C79000-G7076-C504-02

Creating Logic Blocks

3.6 Assigning System Attributes for Parameters

System Attributes

Entering System

You can assign system attributes to blocks and parameters. These influence
the message and connection configuration, operator interface functions, and
process control configuration.

You can assign system attributes for parameters in the variable declaration
table.

To enter system attributes for parameters, select the name of the parameter in

Attributes for the variable declaration table and seledit » Object Propertiesin the
Parameters menu bar to display the Properties dialog. Select the “System Attributes”
tabbed page and enter the required attribute and its value.
Table 3-3 shows which system attributes you can enter in the variable
declaration table.
Table 3-3 System Attributes for Parameters
Attribute Value When to Assign the Attribute Permitted

Declaration type

S7_server [connection, alarm_archiMWhen the parameter is relevant to connection it

message configuration. This parameter contgins
the connection or message number.

S7_a_type [alarm, alarm_8, When the parameter will define the message| IN, only with blocks
alarm_8p, alarm_s, block type in a message block (only possible| of the type FB and
notify, ar_send when the S7_server attribute is set to SFB

alarm_archiv).

S7_co pbkl, pbk, ptpl, obkl, fdl,| When the parameter will specify the connectiptN
iso, pbks, obkv type in the connection configuration (only

possible when the S7_server attribute is set tp
connection).

S7_m_c true, false When the parameter will be modified or IN/OUT / IN_OUT,

monitored from an operator panel. only with blocks of

the type FB and SFH

S7_shortcut | Any 2 characters, for | When the parameter is assigned a shortcut to IN/OUT / IN_OUT,

example, W, Y evaluate analog values. only with blocks of

the type FB and SFH
S7_unit Unit, for example, liters | When the parameter is assigned a unit for IN/OUT / IN_OUT,
evaluating analog values. only with blocks of

the type FB and SFH

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

3-11

Creating Logic Blocks

Table 3-3 System Attributes for Parameters, continued
Attribute Value When to Assign the Attribute Permitted

Declaration type
S7_string_0 | Any 16 characters, , for| When the parameter is assigned text for IN/OUT / IN_OUT,
example, OPEN evaluating binary values only with blocks of
the type FB, SFB,

FC, and SFC
S7_string_1 | Any 16 characters, , for| When the parameter is assigned text for IN/OUT / IN_OUT,
example, CLOSE evaluating binary values only with blocks of
the type FB, SFB,

FC, and SFC
S7_visible | true, false When you do not want the parameter to be | IN/OUT / IN_OUT,
displayed in CFC. only with blocks of
the type FB, SFB,

FC, and SFC
S7_link true, false When you do not want the parameter to be | IN/OUT / IN_OUT,
linked in CFC. only with blocks of
the type FB, SFB,

FC, and SFC
S7_dynamic | true, false When you want the parameter to have dynamildN/OUT / IN_OUT,
capability when testing in CFC. only with blocks of
the type FB, SFB,

FC, and SFC
S7_param | true, false When you want the parameter to be protecteflIN/OUT / IN_OUT,
from incorrect value assignment in CFC. only with blocks of
the type FB, SFB,

FC, and SFC

Ladder Logic (LAD) for S7-300 and S7-400
3-12 C79000-G7076-C504-02

Creating Logic Blocks

3.7 Editing the Code Section — Overview

Code Section In the code section you describe the program sequence of your logic block.

To do this, you form networks from Ladder elements. In most cases, the code

section of a logic block is made up of several networks. After you have
entered a Ladder element, the editor runs a check and shows you if any

entries were incorrect (errors are shown in red). Elements placed incorrectly

are rejected with an error message.

Editable Parts of In a code section, you can edit the block title, network titles, block
the Code Section comments, network comments, and, of course, the statements within the
networks.

® TRAFFIC\..\FB6 - <Offline>
Block title — | FB6 : Traffic Light -
comment

Network 1 : Red request for road traffic
Network n o
comment

| #starter #t_next_red_car #t_dur_r_car #condition
elements #condition

|_

Network
title Green for road traffic

#condition #g_car

| 1A =—()

U VI

v
< | ol
Figure 3-6 Structure of the Code Section

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

3-13

Creating Logic Blocks

Entering New The order in which you perform each of the following steps is not fixed.
Blocks When programming the code section of a new block, we recommend you
proceed as follows:

Enter block title (optional)

'

Enter block comment (optional)

i
Edit networks

Enter network title (optional)

'

Enter network comment (optional)

|

\J

Enter Ladder elements

Figure 3-7 Editing the Code Section

You can make changes either in the insert or the overwrite mode. Toggle
between the insert and overwrite mode usingNISERT key.

Ladder Logic (LAD) for S7-300 and S7-400
3-14 C79000-G7076-C504-02

Creating Logic Blocks

3.8 Basic Guidelines for Entering Ladder Logic Instructions

Overview

Ending a Ladder
Network

Power Flow

A Ladder network can contain several elements in different branches. All
elements and branches must be connected together; however, the power rail
on the left does not count as a connection (IEC 1131-3).

When you program in Ladder, you must observe certain guidelines.
Any errors are reported with an error message in the Program Editor.

Every Ladder network must end with a coil or a box. You cannot use the
following elements to close a network:

e Comparison boxes
e Midline outputs—(#)—

¢ Positive—(P)— or Negative—(N)— RLO edge detection

Branches that cause reverse power flow (from right to left) cannot be edited.
Figure 3-8 shows an example. With signal state “0” at | 1.4, a power flow
from right to left would be possible at | 6.8. This is not allowed.

11.0 11.2 11.4 14.2 Q6.0

| | | | ()

lllegal Power Flow

Q44 12.8

Figure 3-8 Power Flow in Reverse Direction (lllegal)

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

3-15

Creating Logic Blocks

Short Circuit You cannot create branches that cause a short circuit. Figure 3-9 shows an
example:
11.0 11.2 11.4 Q6.0
| | | | | | ()
I I I \
|
L
lllegal Short Circuit

Figure 3-9 Short Circuit in a Ladder Network (lllegal)

Placing Boxes The starting point of a branch for a box connection must always be the left
power rail. Logic or other boxes can, however, exist in the branch before the
box.

Boxes must not be placed within a T-branch. Exceptions to this are compare
boxes. Figure 3-10 shows an example:

T branch

n |:| Box illegal at this
] position

Figure 3-10 Box in a T-Branch (lllegal)

Placing Coils Coils are automatically placed at the right end of a network where they form
the branch end.

Exceptions: Coils for Midline Outputs-(#)— and Positive—(P)— or
Negative—(N)— RLO Edge Detection cannot be placed on the extreme left
or the extreme right of a branch. Nor are they permitted in parallel branches.

Ladder Logic (LAD) for S7-300 and S7-400
3-16 C79000-G7076-C504-02

Creating Logic Blocks

Enable
Input/Enable
Output

Removing and
Changing

Some coils require preceding logic and some coils cannot accept preceding
logic.

e Coils requiring preceding logic:
Output Coil—(), Set Coi—(S), Reset Coi—(R)

Midline Outputs—(#)— and Positive—(P)}— or Negative—(N)— RLO
Edge Detection.

All Counter and Timer Coils
Jump-If-Not—(IJMPN)
Master Control Relay On-(MCR<)
Save RLO to BR Memory—(SAVE)
Return—(RET)
¢ Coils that do not accept preceding logic:
Master Control Relay Activate-(MCRA)
Master Control Relay Deactivate(MCRD)
Open Data Block—(OPN)
Master Control Relay Of—(MCR>)
All other coils can accept preceding logic but do not require it.
The following coils mushot be used aparallel outputs:
Jump-If-Not—(JMPN)
Jump—(IJMP)
Call FC SFC from Coi—(CALL)
Return—(RET)

Passing power to (activating) the enable input “EN” or the enable output
“ENQ” of a logic box is possible but not necessary.

If a branch only consists of one instruction, deleting this instruction removes
the whole branch.

If you remove a box, all branches connected to the box with logic inputs,
with the exception of the main branch, are removed.

The overwrite mode is ideal for exchanging elements of the same type (see
Sectio 3.113).

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

3-17

Creating Logic Blocks

3.9 Entering Ladder Elements

Handling Networks To select a network to allow you to enter LAD elements, click the network
name (for example, “Network 1"). When a network is selected you can, for
example, cut it, paste it again, or copy it.

To create a new network, select the menu comriasedt » Network or
click the corresponding button in the toolbar. The new network is inserted
below the selected network. It only consists of one branch and one coil.

If you enter more elements than can be displayed on the screen, the network
is shifted to the left of the screen. To obtain a better overview, you can adjust
the display with the menu comma¥xw » Zoom In/Zoom Out/Zoom

Factor.
Selecting Objects You go into a network by clicking a Ladder element with the mouse. Within
in Networks a network you can, in principle, select three areas with a mouse click:

¢ Ladder elements, for example, a contact or a box
e Junction points
e Empty instructions (lines or open branches)

You can select one area at a time with one mouse click. (Figure 3-11 shows
examples of selections. Here, a number of selections are shown
simultaneously.)

#condition #t_dur_y_car #r_ped
- | | (
|| \)
#t_dur_g_ped
|]
|
#condition
| ¥
Id

Figure 3-11 Possible Selections in a Ladder Network

You can choose the color of the selections yourself by selecting the menu
commandOptions > Customizeto open the “LAD/FBD” tabbed page.

Ladder Logic (LAD) for S7-300 and S7-400
3-18 C79000-G7076-C504-02

Creating Logic Blocks

Entering Ladder
Logic Elements

The following options are available for inserting Ladder elements:

Enter a normally open contact, normally closed contact, or coil using the
function keysF2, F3, or F4.

¢ Click on the button for a normally open contact, normally closed contact,
or coil from the toolbar.

e Select an element from thesert » LAD Element... menu.

e Select elements from the list box in fAwgram Elementsdialog (see
Figure 3-12). To display this dialog box, use the menu comimaedt »
Program Element.., the button in the toolbar, or the function kay.

BN rB6-<Offline> - LAD/STL/FBD Programming S7 Blocks HE
File Edit PLC Debug View Options Window Help
~ Object » biro
]
g@ @ ﬂ Block Template DJ @ E\\Eﬂ\i ‘ _1 HE“]_[H
Data Type »
Declaration Row 4
& FB6-<Offline> Network
FB6 : Traffic light LAD Element
Network 1 : Red requestfor road traffic
#starltler #t_nextﬂred_car #t_dLIJAr_r_car #conc]ﬁition
1T 1T 4] \
#condition
d
Network 2 : Green for cars Program Elements | %]
#Conlciition - Bit logic]
Vi - Compare
- Convert
NEWI @ Start permanent amber for road traffic B ||
” T --s.cD
#conditi =
conI I| ion .~ scu
' ' '"s_cubp
[- DB Call
[- Real Number Fct.
‘ !I‘\ - Floatina Point Number ‘L
<4 »

]
2

Press F1 for help. Insert

Figure 3-12 Inserting a Ladder Element Using the Program Elements Dialog Box

Ladder elements are always inserted behind the currently selected element.

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

3-19

Creating Logic Blocks

Calling Multiple
Instances

3-20

Note

If you select the group “FB Blocks”or “FC Blocks” in the “Program
Elements” list box, all the corresponding blocks in the S7 program are listed
below. If you select the group “SFC Blocks” or “SFB Blocks”, all the system
function blocks or system functions available on the CPU will be listed.

If you select the group “Libraries” in the “Program Elements” list box, the
STEP 7 standard libraries and any libraries you have created will be listed.

In this way you can include whole blocks in your network and program calls
for other blocks very quickly.

You can also call multiple instances as Ladder elements if you have defined
them in the variable declaration table. To do this, select the menu command
Insert »Program Element In the list box of the Ladder elements, you will
find the group “Multiple Instances” under which all declared multiple
instances are listed.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Creating Logic Blocks

3.10 Creating Parallel Branches

Application To create OR instructions in the Ladder programming language, you need to
create parallel branches.

Guidelines Use the following guidelines to edit parallel branches:
e Draw OR branches from left to right

e Parallel branches are opened downwards and closed upwards

* Open a parallel branch with the menu commiasért » LAD Element...
» Open Branch with function keyrs or with the corresponding button in
the toolbar.

¢ Close a parallel branch with the menu commisseért » LAD
Element..» Close Branch with function keyr9 or with the
corresponding button in the toolbar.

e A parallel branch is always openediiant of the selected element
¢ A parallel branch is always closed after the selected element

e To delete a parallel branch, delete all the elements in the branch. When
the last element in the branch is deleted, the OR branch is automatically

removed.
Creating New If you want to open a new branch, select the starting point of the branch
Branches below which you want to insert a new branch. You create the new branch

with F8 (see Figure 3-13).

Creating a Closed To create a closed branch, select the element in front of which you want to
Branch open a parallel branch. Open the parallel branchrsgjtimsert the Ladder
elements and close the branch again wath

When you close parallel branches, the necessary empty elements are added.

If necessary, the branches are arranged so that branch crossovers are avoided.
If you close the branch directly from the parallel branch, the branch is closed
after the next possible Ladder element.

Figure 3-13 shows an example of how to create a parallel branch using only
function keys and buttons in the toolbar.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 3-21

Creating Logic Blocks

Step 1. M2.0 11.0

Step 2.

oty

o
=
JAN
m
(0]
\

Step 3. M2.0 11.0

Step 4.

Bl =
;

or <F9>

Figure 3-13 Creating Parallel Branches in a Ladder Network

Separating Closed You can separate a closed parallel branch by cutting out the intersection point
Parallel Branches where the parallel branch rejoins the main branch.

Ladder Logic (LAD) for S7-300 and S7-400
3-22 C79000-G7076-C504-02

Creating Logic Blocks

3.11 Editing Addresses and Parameters

Uses

Procedure

Debugging

The Block Editor uses the character string ??:? as placeholders for addresses
and parameters when you insert a Ladder instruction. All addresses and
parameters must be completed correctly for an executable code section. The
exceptions to this are FBs and SFBs or timer and counter boxes that do not
need to have all parameters assigned. Addresses and parameters can be
entered in absolute or symbolic form.

To edit an address or a parameter, open the corresponding text box by
clicking the placeholders ??.?. When you have completed your entry its
syntax is checked. If errors are found, the address or parameter is displayed
in red and an error message appears in the status bar. If the syntax is correct,
the next text box which has not yet been edited is opened.

Step 1. Step 2. Step 3.

T 1 N R

Figure 3-14 Entering Addresses for Ladder Instructions

As you become familiar with the editing tools in Ladder, you can enter all
elements in a network first, and later assign the address or a parameter, to
each element.

Because they are marked in red, errors are easy to recognize. To allow you to
navigate more easily to errors located outside the currently visible screen
section, the Editor has two search functidedit » Go To...» Previous

Error/Next Error which can also be activated from buttons in the toolbar.

The error search extends beyond the network. This means errors are found
throughout the entire code section and not just within the network or
currently visible section of the program. If you activate the status bar with
the menu commandiew » Status Bar, information about the errors will be
displayed in the status bar.

You can correct errors and make changes in the overwrite mode (see

Sectior 3.13).

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

3-23

Creating Logic Blocks

3.12 Symbolic Addressing

Using Symbolic In the Ladder programming language you can either enter absolute addresses,

Addressing parameters and block names, or use symbols. Using the menu command
View » Symbolic Representationyou can switch between symbolic and
absolute addressing.

Specifying To use shared symbols, you must enter them in the symbol table as follows:

Symbols ¢ Open the symbol table with the menu comm@pdions» Symbol

Table.

¢ Using the menu commar@ptions > Edit Symbolsopen a dialog box in
which you can define and modify individual symbols.

For further information about editing symbols, refer tollser Manual
1231/

Representation In most cases it is hot necessary to define whether a symbol is local or
shared. However, in cases where confusion might arise, for example if the
same symbol is being used in both the symbol table and the variable
declaration table, you can distinguish between the symbols as follows:

e Symbols from the symbol tabége shown between inverted comrhas.

¢ Symbols from the variable declaration tabfehe block are preceded by
the hash characté#” .

You do not enter the ID with “..” or “#” yourself. If the symbolic address is
contained in the variable declaration table or in the symbol table, the ID is
completed after the syntax check.

Symbol To make programming with symbolic addressing easier, you can display the
Information absolute address and symbol comment for a symbol. You display this
Made Easy information with the menu commaniew » Symbol Information. If you

choose this option, a text box is displayed after eativork. You cannot
edit in this view. Any modifications you require must be made in the symbol
table or the variable declaration table.

Ladder Logic (LAD) for S7-300 and S7-400
3-24 C79000-G7076-C504-02

Creating Logic Blocks

PROJI1\...\FB53-<Offline> M= K
Output alarm =
| "sensorl” "button2” "lampon”

| { f A ()

Symbol Information:

_ v

KN >l |

Figure 3-15 Symbol Information in Ladder

When you print the block, the printout is the same as the current screen
followed by the corresponding instruction and symbol comments.

Note

When you download a program to the CPU, the symbol table is not
downloaded. This means that when you are editing a user program whose

original is not on the programming device or PC, the original symbols are no
longer available.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 3-25

Creating Logic Blocks

3.13 Editing in the Overwrite Mode

Overwriting
Addresses and
Parameters

Overwriting
Ladder Elements

3-26

In the Block Editor you can change addresses or parameters conveniently
using the overwrite mode. You toggle between insert and overwrite mode
using thanserTkey. You then overwrite your entries in the text boxes for

addresses or parameters.

The overwrite mode allows you to overwrite Ladder elements of the same
type. All boolean logic connections and parameters are retained.

This has the advantage that you do not have to enter the addresses and
parameters again. The Ladder element you want to overwrite can only be
replaced by a Ladder element of the same type. For example, you can
exchange a normally open contact for a normally closed contact, an R/S

flipflop for an S/R flipflop or exchange one timer for another.

To overwrite an existing Ladder element, select it and switch to the overwrite
mode with theNseRT key. The Ladder element is overwritten as soon as you
insert another Ladder element of the same type.

T1
10.0 11.1 S.ODT Q1.0
| | | | (
| | | | s Q ()
S5T#10s-] TV
10.1 112 Bl |- MwW2
I I I I R BCD FmMwa
10.2
| Overwrite
| @
T1
10.0 11.1 S_PULSE Q1.0
| | | | (
|] |] S Q ()
S5T#10s-] TV
10.1 1.2 Bl I MW2
I I I I R BCD } Mw 4
10.2
| |
[l
Figure 3-16 Overwriting Boxes

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Creating Logic Blocks

Special Case: If at one point in a branch one parallel branch closes and another one opens,
Splitting a this is called a junction. You can split a junction by selecting it at the lower
Junction or upper junction point and inserting a Ladder element. The junction is split

and the Ladder element inserted.

M4.0 16.0 Q2.4
| ¥ | ()
4 [l \

18.0 M4.6
Y4 | |
4 K [

Overwrite

M4.0 ??.? 16.0 Q2.4
| ¥ | | ()
4 [\

18.0 M4.6
| ¥ |
4 [l

Figure 3-17 Splitting a Junction

Note

You can correct comments and titles in overwrite mode.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 3-27

Creating Logic Blocks

3.14 Entering Titles and Comments

Overview

Entering Block
Titles and Network
Titles

Entering
Comments

3-28

In the code section of a logic block, you can enter information such as block
and network titles, and block and network comments. These entries are
optional and not essential to the program execution.

To enter a block title or network title, position the cursor on the three
question marks to the right of the block name or network name (for example,
network 1 : ??7?). A text box is then opened in which you enter the title. This
can be up to 64 characters long.

1. .
Network 2. ???
TT—— Mouse click

Network 2: Network title

Figure 3-18 Entering Block Titles

Using theView » Commentmenu command, you can display or hide the

gray comment field. When you double-click the comment field, a text box
appears which you can use to enter comments. You have 64 Kbytes per block
available for block comments and network comments.

L 277

Mouse click

Comment for network or block

Figure 3-19 Entering Comments

Note

When you download a block to the CPU, the comments are not downloaded.
If you then upload a block from the CPU, whose original is not on your
programming device or PC, you cannot view or edit the original comments.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Creating Data Blocks and User-Defined 4

Data Types

In This Chapter

Chapter Overview

Data blocks are an important part of your user program since they contain all
its data. This chapter explains how to create data blocks.

User-defined data types (UDTSs) are not essential for programming. However,
they can be real time-savers in situations where you have to write programs
for similar tasks.

Section Description Page
4.1 Creating Data Blocks - Overview 4-2
4.2 Selecting a Method la-4
4.3 Editing the Declaration Table [4-§
4.4 Editing Actual Data Values la-4
4.5 Creating User-Defined Data Types (UDTSs) [a-§

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

4-1

Creating Data Blocks and User-Defined Data Types

4.1 Creating Data Blocks — Overview

Data Blocks

Types of Data
Blocks

Methods of
Creating Data
Blocks

4-2

Data blocks (DBs) are used to handle data which is why they do not have a
code section. Programming data blocks involves the following :

¢ Declaration table The declaration table is where you specify the data
structure of the data block.

¢ Block properties: These include extra information such as time stamp,
programming language and path name, which is all entered by the system
itself. You can also add information about the name, family, version and
author and you can assign system attributes for blocks (see Hapter 5).

A user program can have the following data blocks:

e Shared DBscan be accessed by all logic blocks in the program. The data
remains stored in the data block even when it has been closed.

If you require several shared DBs of the same data structure, you can
create them with the help of a UDT. Thesedata blocks with an
associated user-defined data type

¢ Instance DBsare associated with specific function blocks and are
structured according to the declaration table of the FB. You can only
create an instance DB if the corresponding function block exists. They are
data blocks with an associated function block

Depending on the type of data block you want to create, different methods
are used.

Shared data blockscan be created as follows:

¢ Define the structure for a single data block. For this you must define the
variables and data types in the desired order. This structure only applies to
this DB.

¢ Define the structure for the data block with the help of a user-defined data
type. In this case the UDT structure defines the data structure of the DB.
A user data type can be assigned to a humber of data blocks.

Create arnstance data blockand then:

e Assign an existing function block to the data block. In this case the
declaration section of the function block defines the structure of the data
block. A number of instance data blocks can be assigned to one function
block.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Creating Data Blocks and User-Defined Data Types

Note

When you change the declaration section of an FB, you have to recreate all
the instance data blocks associated with it in order to ensure their
compatibility. The same applies to data blocks which have been created on
the basis of a UDT.

Create a data block (DB) in the SIMATIC Manager or in the Editor

LAD Editor \

Select the desired method ...

Y \i Y
.. Declaration for a single Assign the
data block. - Assign to a UDT. DB to an FB.
Edit the declaration table.
Shared DB Instance DB

\

Edit the block properties.

Save the block.

:

Figure 4-1 Programming Procedure for Creating Data Blocks

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 4-3

Creating Data Blocks and User-Defined Data Types

4.2 Selecting a Method

Procedure When you create a DB in the SIMATIC Manager or inltA® Editor, you
must select the method you want to use. You are prompted to select the
method in a dialog box.

New Data Block
Block: DB7
Programming Tool: DB Editor j
Create
O Data Block

O Data Block Referencing a User-Defined Data Type

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Reference:

FB6
FB88
FB101

Figure 4-2 Selecting a Method and Assigning an FB/UDT

When creating a DB based on either a UDT or as an instance data block of an
FB, you make your selection in the list box that displays all existing UDTs
and FBs. The UDT or FB must already exist.

How to Proceed How you proceed from here depends on whether you are creating the DB by
assigning it or by creating a single declaration.

¢ Since the assigned UDT or FB defines the structure of the data block, you
have actually already created the new data block. The declaration table is
displayed on your screen, but no further changes can be made to it.

¢ If you are defining the structure of a shared data block, you must now edit
the declaration table, declaring the variable names and data type and, if
you require, the initial value and comment (see Sectin 4.3).

Ladder Logic (LAD) for S7-300 and S7-400
4-4 C79000-G7076-C504-02

Creating Data Blocks and User-Defined Data Types

4.3 Editing the Declaration Table

Purpose of the
Declaration View

Structure of the
Table in the
Declaration View

Procedure

When you create single shared data blocks or UDTs, you must declare their
elements (variables) and their data types. For this you use the declaration

table in the declaration view. When working with data blocks, you change to
this view with the menu commantiew » Declaration View.

This does not apply to data blocks assigned to a UDT or FB since the
declaration is already defined by the UDT or FB.

The declaration view of a data block shows the addresses, the declaration
types (only for instance DBs), the variable names (symbols), initial values
and comments. Figure 4-3 shows an example:

W DB15 - <Offline> M=
0.0 STRUCT

+0.0 speed INT 100 Maximum RPM
+2.0 runtime DINT L#0
+6.0 history EAL 0.000000e+000

+10.0 motor_on BOOL FALSE

+10.1 motor_off OOL FALSE

=12.0 END_STRUCT

Figure 4-3 Declaring a Data Block

The columns have the same significance as those in the declaration table for
logic blocks (see Sectibn B.3).

To enter a new declaration, type in the required declaration type, variable
name, data type, initial value (optional) and comment (optional). You can
move the cursor from one cell to the next usingiék or RETURN keys. At
the end of each row, an address is allocated to the variable.

The syntax is checked after each cell has been edited and errors are shown in
red. You can continue to make your entries and correct any errors later.

Note

Editing in the declaration view is the same as editing the variable declaration
table of logic blocks (see Sect .4). The editing and input procedures are

identical and you should also proceed in the same way when entering arrays
or structures.

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

4-5

Creating Data Blocks and User-Defined Data Types

4.4 Editing Actual Data Values

Initial Value —
Actual Value

Data View of Data
Blocks

Displayed Actual
Value

4-6

When you create and save a data block for the first time, the declared
(optional) initial value is automatically assumed as the actual value of the
variable. When it accesses the data block, the user program continues to use
this as the actual value, unless you explicitly specify a new actual value for
the variable in the user program.

The actual values of the variables are changed by the logic blocks writing to
them while the CPU program is being executed. You can display and change
the actual values of variables yourself.

You must switch to the data view to display and edit actual data values in
data blocks. Open a data block and use the menu convieme Data
View to switch to the data view.

The only difference between the data view and the declaration view of a data
block is the additional column “Actual Value”. In the data view, the elements
of variables with a complex data type are displayed individually and with
their complete symbolic name, so that each of their actual values can be
displayed and edited (see Figure 4-4).

W DB17 - <Offline> BEE

0.0 | motor.speed INT 100 89 Maximum RPM
2.0 | motor.runtime DINT |L#0 L#0
6.0 | motor.history REAL [0.000000e+000 | 0.000000e+000

10.0 | motor.motor_on BOOL |FALSE

10.1 | motor.motor_off BOOL|FALSE FALSE

12.0 | field[1] INT] 0 7

14.0 | field[2] INT] 0 4

16.0 | field[3] INT] 0 8

Figure 4-4 Data Block in the Data View

The displayed actual value is either the value that the variable had when you
opened the data block or the most recently modified and saved value.

Note

If you open data blocks online, the actual value is not updated cyclically.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Creating Data Blocks and User-Defined Data Types

Changing and
Reinitializing
Actual Values

Saving Actual
Values

You can overwrite the actual values in the “Actual Value” column. The
values you enter must be compatible with the data type.

Using the menu commartgtit » Initialize Data Block you can reinitialize

the whole data block. This overwrites the actual values of the variables with
the initial values which you declared in the declaration view or those which
you declared in the FB or UDT.

The actual values are only activated and become valid when you save them.

* To save the actual data values that you changed offline, select the menu
commandile » Saveor click on the “Save” button in the toolbar. Even if
the data block was opened online, only the data block that exists offline
will be saved.

¢ To download the modified data values to the CPU, select the menu
commandPLC » Download or click the button in the toolbar.

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

4-7

Creating Data Blocks and User-Defined Data Types

4.5 Creating User-Defined Data Types (UDTs)

Overview

Procedure

Editing a
Declaration Table

4-8

User-defined data types are data structures that you create yourself and save
as blocks. Once defined, you can use them under their absolute or symbolic
block names, throughout the entire user program. You can use UDTs as
follows:

¢ Like elementary or complex data types asdht typein the declaration
of logic blocks (FCs, FBs, OBs) or in data blocks (DBs).

* Astemplates for creating data blockswith the same data structure.

Figure 4-5 shows the basic procedure for creating a user data type:

Create a block for a UDT in the
SIMATIC Manager or in the Editor

LAD Editor

Edit the declaration table

\

Edit the block properties

.

Save the block

Figure 4-5 Creating a User Data Type

After creating or opening a UDT in the SIMATIC Manager or the
incremental editor, a declaration table is displayed in which you declare the
structure of the data type.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Creating Data Blocks and User-Defined Data Types

@ UDTS56 - <Offline> HE
[Address [Symbol paaType mfialVale Commeqt |
0.0 STRUCT
+0.0 speed INT 100 Maximum RPM
+2.0 runtime DINT L#0
+6.0 history REAL 0.000000e+000
+10.0 motor_on BOOL FALSE
+10.1 motor_off BOOL FALSE
=12.0 END;STRUCT

Figure 4-6 Declaring a UDT

The first and the final row of the declaration view of a UDT are already
allocated and display the key words STRUCT and END_STRUCT, which
define the beginning and end of a UDT. These rows cannot be edited.

Initially, two empty rows are displayed to allow you to declare your
variables. You must enter the variable name and data type. Initial value or
comments are optional. You can create more empty rows using the menu
commandnsert » Declaration Row» Before Selection / After Selection.

Note

Editing this declaration table is similar to editing the declaration table of
logic and data blocks.

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

4-9

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Editing the Block Properties and Testing 5
the Program

In This Chapter After you have created and edited the data blocks and logic blocks, you
should check and edit the block properties. They contain information that
identifies the block and indicates how and when it was created. This
information can be useful when debugging a program.

The Ladder Editor allows you to test a single block while it is being executed
in a user program on the CPU. You can follow the signal flow within
networks on the screen. This program test, known as Program Status, helps
you check various processes and eliminate errors.

Chapter Overview Section Description Page
5.1 Editing the Block Properties
5.2 Testing your Ladder Program - Overview
5.3 Setting the Program Status
5.4 Setting the Trigger Conditions
5.5 Choosing a Test Environment and Starting/Stopping the
Program Status

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 5-1

Editing the Block Properties and Testing the Program

The block properties contain additional information about the block.
Optional data such as name, family, version and author of the block can be

entered here. The properties also include other statistical data and further

information, automatically entered by the system, which cannot be edited by
the user (see Figure 5-1). You can also assign system attributes to the block.

The block properties provide you with important information about the block

type, memory requirements and time of the last modification. This can be
useful when trying to track down errors, such as insufficient memory and

5.1 Editing the Block Properties
Overview

time stamp conflicts.
Procedure

¢ In the SIMATIC Manager, select the block and select the menu command

Edit » Object Properties

The block properties can be edited using a dialog box.

e SelectFile » Propertieswhen opening a block in the Ladder Editor.

Properties - Block
General-Partl | GeneraI—Part2|System Attributes|
Internal ID: FB6 Language: LAD
Type: Function Block (FB)
Symbol: Symbol from traffic light
Symbol Comment: Traffic light on Main Street
Project Path: Traffic\Traffic light\User Program\FB6 ﬂ
4
Name (Header): W Version: 01.00
Eamily: W Block Version: 3.000
Author: Meier Multiple Instance DB
Last Modified:
Code: 25.10.96 15:23:41.190
Interface: 25.10.96 15:23:41.190
Cancel | Hep |

Figure 5-1 Setting the Display of the Program Status in Ladder

In the tabbed pages “General — Part 1", “General Part — 2", and “System
Attributes”, you can make a number of entries including the following:

5-2

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Editing the Block Properties and Testing the Program

Block Name and Blocks with a name and family are easier to classify. For example you could
Family allocate some blocks to the “Closed-Loop Controller” family, showing that
they are all used for programming closed-loop controllers.

When the block is called later in the code section of another Ladder block,
the benefits of this information become apparent: the family and name of the
block are displayed in the “Program Elements” list box when this block is
selected, so that you can identify the purpose of the block more easily.

Block Release This information shows you which STEP 7 version was used to create a
block. Version 1 blocks must be converted before they can be incorporated in
a program of version 3. You can achieve this in the SIMATIC Manager by
using the menu commarkdle » Open Old Version 1 Project

Blocks created with version 1 cannot be used in conjunction with multiple
instances. They must be decompiled into source files and then be compiled
into version 3 blocks. For further information, refer to theeer Manual

1231/

Block Attributes Block attributes in the “General — Part 2” tabbed page include entries such as
the following:

e The attribute DB write-protected in PLC” means that the block is
write-protected. This is useful for data blocks containing constant values
that must not be changed. The DB must exist as an STL source file.

¢ The attribute Know How Protect’ indicates a protected block and has
the following effects:

— The code section cannot be viewed.

— The variable declaration table does not display the temporary and
static variables.

— STL source files cannot be generated from the block.
— Block properties cannot be edited.

¢ The attribute Standard block’ means a protected standard Siemens
block. It appears on the bottom left of the page.

* The attribute Unlinked” only occurs with to data blocks. It indicates that
the data block cannot be downloaded from the load memory to the work
memory of the CPU. Data blocks in the load memory can only be
accessed using SFCs which copy the content of the data blocks to the
work memory. A more effective use of the work memory is achieved as it
only contains relevant data during the run time.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 5-3

Editing the Block Properties and Testing the Program

Note

Attributes such as block protection, write protection and unlinked can only

be added to the block if it is being programmed as a source file in STL. If
you have created your block in Ladder, you must change to the programming
language STL using the menu commafiev » STL. You must then convert

the block into a source file before entering these attributes. Once the source

System Attributes

files are compiled into blocks the blocks are protected according to the
attributes you have selected.

Further information can be found in tB&L Reference Manu&l32/.

To configure the process control and process diagnostics, you can assign the

for Blocks following system attributes in the “System Attributes” tabbed page.
Table 5-1 System Attributes for Process Control Configuration
Attribute Value When to Assign the Attribute Permitted Block
Type
S7 m_c true, false When the block will be manipulated or FB, SFB
monitored from an operator panel.
S7_tasklist | 'tasknamel’, When the block will be called in organization | FB, SFB, FC, SFC
'taskname?2’, etc. blocks other than in cyclic OBs (for example in
error or startup OBs).
S7_block- big, small To specify whether the block is displayed in lafdeB, SFB, FC, SFC
view or small format.
Table 5-2 System Attributes for Process Diagnostics
Attribute Value When to Assign the Attribute Permitted Block
Type
S7_pdiag true, false When the block will generate information FB, FC, OB, DB
relevant to process diagnostics.
S7_pdiag_ | true, false When the block will generate information ubT
unit relevant to process diagnostics and a unit of
measurement will be monitored.
S7_pdiag_ |true, false When the block will generate information uDT
motion relevant to process diagnostics and a motion will
be monitored.

5-4

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Editing the Block Properties and Testing the Program

5.2 Testing your Ladder Program - Overview

Test Method

Prior Conditions

Basic Procedure

You can test your Ladder program by visually displaying the signal flow
within the network of a block. The display of the program is updated
cyclically.

You can only display the program status when the following conditions are
met:

e The block was saved and downloaded to the CPU without any errors.
e The CPU is in operation and the user program is running.

* You have opened the block online.

Figure 5-2 shows the basic procedure for monitoring the program status:

Open block online

Make settings for test display

Set trigger conditions (optional)

Select test environment

Start/stop test

Figure 5-2 Procedure for Testing Logic Blocks in Ladder

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

5-5

Editing the Block Properties and Testing the Program

5.3 Setting the Program Status

Procedure Before starting theadder program test, you select the criteria you would
like to see displayed. To do this use the menu comm@gtidns >
Customizeand open the “Ladder Logic” tabbed page.

LAD/STL/FBD
| Editor | STL | LAD/FBD | Create Block | Source Files |
~ Layout — Element Representation

[DIN A4 Tandscape I3

LAD: | Deep(2D) <]

B W|dth Of Address F|e|d] FBD ” Deep (3D) j
18 =1 (10-24)
— Line/Color
For: | Status fulfilled v

Line Thickness Color

1 —

@® Medium

O Thick Select I

Cancel | __riep

Figure 5-3 Setting the Display for the Program Status in Ladder

In this tabbed page, you now select the color and line thickness for the two
possible results:

e “Status not fulfilled”: the conditions along the current path have not been
fulfilled. No current is flowing (dotted line).

e “Status fulfilled”: the conditions along the current path have been
fulfilled. Current is flowing (solid line).

Ladder Logic (LAD) for S7-300 and S7-400
5-6 C79000-G7076-C504-02

Editing the Block Properties and Testing the Program

5.4 Setting the Trigger Conditions

Background By setting the trigger condition you select the call environment of the block
to be tested. The test will not take place unless the trigger condition is
fulfilled.

Procedure The trigger conditions can be set by using the menu comDeldg*> Call

Environment.

Block Call Environment
Trigger Condition

O No Condition

O call Path 1st Block:
2nd Block:
3rd Block:
Block Status: FB6

@® Open Data Blocks
Global DB Number: DB6
Instance DB Number:

cancel | _relp_|
Figure 5-4 Setting the Trigger Conditions
Trigger Condition The three possible settings have the following meanings:

Settings and their
Meanings

* No trigger conditions: The call environment of the block being tested is
irrelevant. This means that if a block is called at various points during the

program, you will not be able to distinguish which status applied to which

call.

e Call path: This is the call path used for calling the block in order to
trigger a status display. You can enter three block nesting levels before the

tested block is reached.

* Open data blocks: In this case the call environment is defined by one or
two data blocks. A status display is triggered when the block currently
being tested is called in association with one of these data blocks.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

5-7

Editing the Block Properties and Testing the Program

5.5 Choosing a Test Environment and Starting/Stopping the Program

Status

Selecting a Test
Environment

Starting and
Stopping the
Program Status

5-8

There are two ways of testing your program online.

¢ The “process test environment tests your program online, in a working
process. The status of the statements in programmed loops that are run
through more than once in the scan cycle is stopped at the return jump to
the start of the loop and is no longer updated while the loop is visible.
This mode causes the least load on the cycle.

¢ In the test environmentdboratory” your program is also tested online
under laboratory conditions. In this case, however, the status of
statements in programmed loops that are run through more than once in
the scan cycle is shown after the end of each loop. This mode can take up
considerable scan time depending on the number of loop iterations and
the number of tested statements.

You can select the test environment using the menu combetngy> Test
Environment » Laboratory/Process

The program status is started and stopped by using the conbmbod»>
Monitor. The program status is only displayed for the area currently visible
in the editor.

B FB6-<Online> BEE

0.0 | in dur g p S5TIME S5THOMS B
2.0 | in del_r_p S5TIME S5T#OMS
40 | in starter BOOL FALSE -
FB6 : Traffic Light =
.
#starter #t_next_red_car #t_dur_r_car #condition
| i - - / 0)
#condition
i
Network 2: Green for road traffic
#condition #g car
T2 2
Network 3: Start duration of yellow for road traffic
#condition #_dur_y_car
i \SD,
S5T#3S
| o]

Figure 5-5 Program Status in Ladder (Example)

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Editing the Block Properties and Testing the Program

Checking the
Scan Time

Activating the test mode increases the scan time. If the set scan time is
exceeded, the CPU switches to STOP unless you have programmed OB80.

You can display and check the currently set scan time using the menu
commandPLC » Module Information. If necessary, you can change the
maximum scan time in the CPU properties for test purposes when assigning
hardware parameters.

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

5-9

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Part 2;
Language Description

Configuration and
Elements of Ladder Logic

Addressing

Bit Logic Instructions

Timer Instructions

Counter Instructions

Integer Math Instructions

Floating-Point Math Instructions

Comparison Instructions

Transfer and
Conversion Instructions

Word Logic Instructions

Shift and Rotate Instructions

Data Block Instructions

Jump Instructions

Status Bit Instructions

Program Control Instructions

© 00 N O

10
11
12
13
14
15
16
17
18
19
20

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Configuration and Elements of Ladder

Logic

Chapter Overview

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Section Description Page
6.1 Elements and Box Structure
6.2 Boolean Logic and Truth Tables
6.3 Significance of the CPU Registers in Instructions 6-1

6-1

Configuration and Elements of Ladder Logic

6.1 Elements and Boxes

Ladder
Instructions

Instructions as
Elements

Instructions as
Elements with
Address

Instructions as
Elements with
Address and Value

6-2

Ladder instructions consist of elements and boxes which are connected
graphically to form networks. The elements and boxes can be classified into
the following groups:

STEP 7 represents some ladder logic instructions as individual elements that
need no address or parameters (see Table 6-1).

Table 6-1 Ladder Logic Instruction as Elements without Addresses or Parameters

Element Name Section in This Manual

_{ NOT}— Invert Power Flow

STEP 7 represents some ladder logic instructions as individual elements for
which you need to enter an address (see Table 6-2). For more information on
addressing, see Chaptér 7.

Table 6-2 Ladder Logic Instruction as an Element with an Addres
Element Name Section in This Manual
<Address>

Normally Open Contact

{}

STEP 7 represents some ladder logic instructions as individual elements for
which you need to enter an address and a value (such as a time or count
value, see Table 6-3).

For more information on addressing, see Chapter 7.

Table 6-3 Ladder Logic Instruction as an Element with an Address and Value
Element Name Section in This Manual
<Address> Retentive On-Delav Ti
etentive On-Delay Time
—(s9—— o
Value

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Configuration and Elements of Ladder Logic

Instructions as
Boxes with
Parameters

Enable In and
Enable Out
Parameters

Restrictions for
Boxes and Inline
Coils

Memory Areas and
Their Functions

STEP 7 represents some ladder logic instructions as boxes with lines
indicating inputs and outputs (see Table 6-4). The inputs are on the left side
of the box; the outputs are on the right side of the box. You fill in the input
parameters. For the output parameters, you fill in locations where the STEP 7
software can place output information for you. You must use the specific
notation of the individual data types for the parameters.

The principle of the enable in (EN) and enable out (ENO) parameters is
explained below. For more information on input and output parameters, see
the description of each instruction in this manual.

Table 6-4 Ladder Logic Instruction as Box with Inputs and Outputs
Box Name Section in This Manual
DIV_R
EN ENO
it Divide Real
—{IN2 OUT |[—

Passing power to (activating) the enable input (EN) of a ladder logic box
causes the box to carry out a specific function. If the box is able to execute
its function without error, the enable output (ENO) passes power along the
circuit. The ladder logic box parameters EN and ENO are of data type BOOL
and can be in memory area |, Q, M, D, or L (see Tables 6-5 and 6-6).

EN and ENO function according to the following principles:

e If EN is not activated (that is, if it has a signal state of 0), the box does
not carry out its function and ENO is not activated (that is, it also has a
signal state of 0).

e If ENis activated (that is, if it has a signal state of 1) and the box to
which EN belongs executes its function without error, ENO is also
activated (that is, it also has a signal state of 1).

e If ENis activated (that is, if it has a signal state of 1) and an error occurs
while the box to which EN belongs is executing its function, ENO is not
activated (that is, its signal state is 0).

You cannot place a box or an inline coil in a ladder logic rung which does not
start at the left power rail. The Compare instructions are an exception.

Most of the addresses in LAD relate to memory areas. The following table
shows the types and their functions.

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

6-3

Configuration and Elements of Ladder Logic

Table 6-5 Memory Areas and Their Functions
. Access to Area
Name &f Area Function of Area _ .])
via Units of the following size: | Abbrev.

Process-imageg At the beginning of the scan cycle, the operafitigput bit |

input system reads the inputs from the process andnput byte 1B
records the values in this area. The program|daput word W
use these values in its cyclic processing. Input double word ID

Process-imageg During the scan cycle, the program calculatgsOutput bit Q

output output values and places them in this area. Autput byte QB
the end of the scan cycle, the operating syste@®utput word Qw
reads the calculated output values from this ai@atput double word QD
and sends them to the process outputs.

Bit memory This area provides storage for interim resultg Memory bit M
calculated in the program. Memory byte MB

Memory word MW
Memory double word MD

1/0: This area enables your program to have dirddPeripheral input byte PIB

external input | access to input and output modules (that is, | Peripheral input word PIW
peripheral inputs and outputs). Peripheral input double word PID

1/0: Peripheral output byte PQB

external output Peripheral output word PQW

Peripheral output double word PQD

Timer Timers are function elements of Ladder Timer (T) T
programming. This area provides storage fo
timer cells. In this area, clock timing accessgs
time cells to update them by decrementing the
time value. Timer instructions access time cells
here.

Counter Counters are function elements of Ladder | Counter (C) C
programming. This area provides storage fo
counters. Counter instructions access them here.

Data block This area contains data that can be accessepData block opened with the statemént
from any block. If you need to have two “OPN DB™:
different data blocks open at the same time, jyou
can open one with the statement “OPN DB”| Data bit DBX
and one with the statement “OPN DI”. The | Data byte DBB
notation of the addresses, e.g. L DBWi and | Data word DBW
L DIWi, determines the data block to be Data double word DBD
accessed.

While you can use the “OPN DI” statement iy 44 plock opened with the statement
open any data block, the principal use of thig «opN D

statement is to open instance data blocks that are

associated with function blocks (FBs) and | pata bit DIX
system function blocks (SFBs). For more Data byte DIB
information on FBs and SFBs, see 8iEEP 7 | pata word DIW
Program Design ManuaR34 and theSTEP 7 | pata double word DID
User Manual’23Y/.

Local data This area contains temporary data that is use@emporary local data bit L
within a logic block (FB, or FC). These data affemporary local data byte LB
also called dynamic local data. They serve ag Bamporary local data word LW
intermediate buffer. When the logic block is | Temporary local data double word| LD

finished, these data are lost. The data are

contained in the local data stack (L stack).

6-4

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Configuration and Elements of Ladder Logic

Table 6-6 lists the maximum address ranges for various memory areas. For
the address range possible with your CPU, refer to the appropriate S7-300

Table 6-6

CPU manual.

Memory Areas and Their Address Ranges

. Access to Area
Name of Area i
via Units of the Following Size: Abbrev. Maximum Address Range
Process-image inpuiinput bit | 0.0 to 65,535.7
Input byte 1B 0 to 65,535
Input word W 0 to 65,534
Input double word ID 0 to 65,532
Process-image Output bit Q 0.0 to 65,535.7
output Output byte QB 0 to 65,535
Output word QW 0 to 65,534
Output double word QD 0 to 65,532
Bit memory Memory bit M 0.0 to 255.7
Memory byte MB 0 to 255
Memory word Mw 0 to 254
Memory double word MD 0 to 252
Peripheral I/O: Peripheral input byte PIB 0 to 65,535
External input Peripheral input word PIW 0 to 65,534
Peripheral input double word PID 0 to 65,532
Peripheral 1/O: Peripheral output byte PQB 0 to 65,535
External output Peripheral output word PQW 0 to 65,534
Peripheral output double word PQD 0 to 65,532
Timer Timer (T) T 0 to 255
Counter Counter (C) C 0 to 255
Data block Data block opened with the statement DB
—(OPN)
Data bit DBX 0.0 to 65,535.7
Data byte DBB 0 to 65,535
Data word DBW 0 to 65, 534
Data double word DBD 0 to 65,532
Data block opened with the statement DI
—(OPN)
Data bit DIX 0.0 to 65,535.7
Data byte DIB 0 to 65,535
Data word DIW 0to 65, 534
Data double word DID 0 to 65,532
Local data Temporary local data bit L 0.0 to 65,535.7
Temporary local data byte LB 0 to 65,535
Temporary local data word Lw 0 to 65, 534
Temporary local data double word LD 0 to 65,532

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Configuration and Elements of Ladder Logic

6.2 Boolean Logic and Truth Tables

Power Flow

Normally Open
Contact

6-6

A ladder logic program tracks power flow between power rails as it passes
through various inputs, outputs, and other elements and boxes. Many Ladder
instructions work according to the principles of Boolean logic.

Each of the Boolean logic instructions checks the signal state of an electrical
contact for O (not activated, off) or 1 (activated, on) and produces a result
based on the findings. The instruction then either stores this result or uses it
to perform a Boolean logic operation. The result of the logic operation is
called the RLO. The principles of Boolean logic are demonstrated here on
the basis of normally open and normally closed contacts.

Figure 6-1 shows two conditions of a relay logic circuit with one contact
between a power rail and a coil. The normal state of this contact is open. If
the contact is not activated, it remains open. The signal state of the open
contact is 0 (not activated). If the contact remains open, the power from the
power rail cannot energize the coil at the end of the circuit. If the contact is
activated (signal state of the contact is 1), power will flow to the coil.

The circuit on the left in Figure 6-1 shows a normally open control relay
contact as it is sometimes represented in relay logic diagrams. For the
purpose of this example, the circuit on the right indicates that the contact has
been activated and is therefore closed.

Standard Representation Representation Indicating
Activated Contact

Power Rail T T
Normally Open
Contact \ Yﬁ

Caoil

———— ———

Figure 6-1 Relay Logic Circuit with Normally Open Control Relay Contact

You can use a Normally Open Contact instruction (see Séctibn 8.2) to check
the signal state of a normally open control relay contact. By checking the
signal state, the instruction determines whether power can flow across the
contact or not. If power can flow, the instruction produces a result of 1; if
power cannot flow, the instruction produces a result of 0 (see Table 6-7). The
instruction can either store this result or use it to perform a Boolean logic
operation.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Configuration and Elements of Ladder Logic

Normally Closed
Contact

Figure 6-2 shows two representations of a relay logic circuit with one contact
between a power rail and a coil. The normal state of this contact is closed. If
the contact is not activated, it remains closed. The signal state of the closed
contact is 0 (not activated). If the contact remains closed, power from the
power rail can cross the contact to energize the coil at the end of the circuit.
Activating the contact (signal state of the contact is 1) opens the contact,
interrupting the flow of power to the coil.

The circuit on the left in Figure 6-2 shows a normally closed control relay
contact as it is sometimes represented in relay logic diagrams. For the
purpose of this example, the circuit on the right indicates that the contact has
been activated and is therefore open.

Standard Representation Representation Indicating
Activated Contact

Power Rail
Normally
Closed
Contact

Coil

——— ————

Figure 6-2 Relay Logic Circuit with Normally Closed Control Relay Contact

You can use a Normally Closed Contact instruction (see Sectjon 8.3) to check
the signal state of a normally closed control relay contact. By checking the
signal state, the instruction determines whether power can flow across the
contact or not. If power can flow, the instruction produces a result of 1; if
power cannot flow, the instruction produces a result of O (see Table 6-7). The
instruction can either store this result or use it to perform a Boolean logic
operation.

Table 6-7 Result of Signal State Check by Normally Open and Normally Closed Contact

Instruction Result if Signal State of Contact is 1 Result if Signal State of Contact Is 0

(Contact Is Activated) (Contact Is Not Activated)

}_ 1 (Available power can flow because the | 0 (Available power cannot flow because the
normally open contact is closed.) normally open contact is open.)

JF 0 (Available power cannot flow because the 1 (Available power can flow because the
normally closed contact is opened.) normally closed contact is closed.)

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

6-7

Configuration and Elements of Ladder Logic

Programming
Contacts in Series

Figure 6-3 shows a logic string of Ladder instructions that represents two
normally open contacts connected in series to a coil. The contacts are
labelled “I” for “input” and the coil is labelled “Q” for “output.” Activating a
normally open contact closes the contact. When both contacts in the logic
string are activated (that is, closed), power can flow from the power rail
across each contact to energize the coil at the end of the circuit. That is,
when both contact | 1.8nd | 1.1 are activated, power can flow to the coil.

In Diagram 1, both contacts are activated. Activating a normally open
contact closes the contact. Power can flow from the power rail across each
closed contact to energize the coil at the end of the circuit.

In Diagrams 2 and 3, because one of the two contacts is not activated, power
cannot flow all the way to the coil. The coil is not energized.

In Diagram 4, neither contact is activated. Both contacts remain open. Power
cannot flow to the coil. The coil is not energized.

Diagram 1 Diagram 2
11.0 111 Q4.0 11.0 11.1 Q4.0
8 8 \ ‘ 1 - ()
Diagram 3 Diagram 4
‘ 11.0 1.1 Q4.0 ‘ 11.0 11.1 Q4.0
| [| () || || ()
‘ 11 Il \ ‘ Il Il \
_| |— = activated _() = energized

Figure 6-3

6-8

Using Normally Open Contact to Program Contacts in a Series

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Configuration and Elements of Ladder Logic

Using Normally Figure 6-3 shows a ladder logic diagram that you can use to program two
Open Contact in normally open contacts connected in series to a coil. The first Normally Open
Series Contact instruction in the logic string checks the signal state of the first

contact in the series (input | 1.0) and produces a result based on the findings
(see Table 6-7). This result can be 1 or 0. A result of 1 means that the contact
is closed and any available power could flow across the contact; a result of 0
means that the contact is open, interrupting the flow of any power available

at the contact. The first Normally Open Contact instruction copies this 1 or 0
to a memory bit in the status word of the programmable logic controller. This
bit is called the “result of logic operation” (RLO) bit.

The second Normally Open Contact instruction in the logic string checks the
signal state of the second contact in the series (I 1.1) and produces a result
based on the findings (see Table 6-7). This result can be 1 or 0, depending on
whether the contact is closed or open. At this point, the second Normally
Open Contact instruction performs a Boolean logic combination. The
instruction takes the result it produced upon checking the signal state of the
second contact and combines this result with the value stored in the RLO bit.
The result of this combination (either 1 or 0) is stored in the RLO bit of the
status word, replacing the old value stored there. The Output Coil instruction
(see Sectio[@A) assigns this new value to the coil (output Q 4.0).

The possible results of such a logic combination can be shown in a “truth
table.” In such a logic combination, 1 represents “true” and O represents
“false.” The possible Boolean logic combinations and their results are
summed up in Table 6-8, where “contact is closed” and “power can flow”
correspond to “true” and “contact is open” and “power cannot flow”
correspond to “false” (see Figure 6-3 for the contacts).

Table 6-8 Truth Table: And

If the result produced by | and the result produced | the result of the logic
checking the signal state | by checking the signal operation shown in
of contact 1 1.0 is state of contact | 1.1is [Figure 6-3 is
1 (contact is closed) 1 (contact is closed) 1 (power can flow)
0 (contact is open) 1 (contact is closed) 0 (power cannot flow)
1 (contact is closed) 0 (contact is open) 0 (power cannot flow)
0 (contact is open) 0 (contact is open) 0 (power cannot flow)

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 6-9

Configuration and Elements of Ladder Logic

Programming
Contacts in

Parallel

Figure 6-4 shows a logic string of Ladder instructions that represent two
normally open contacts connected in parallel to a coil. The contacts are
labelled “I” for “input” and the coil is labelled “Q” for “output.” Activating a
normally open contact closes the contact. When either one contact in the
logic string (I 1.1)or the other contact in the logic string (I 1.0) is activated
(that is, closed), power can flow from the power rail to energize the coil
(Q 4.0) at the end of the circuit. If both contacts in the logic string are
activated, power can flow from the power rail to energize the coil.

In Diagrams 1 and 2, one contact is activated and the other is not. Activating
a normally open contact closes the contact. Power can flow from the power
rail across the closed contact and continue to the coil at the end of the circuit.
Because the two contacts are connected in parallel, only one of the two
contacts need be closed for the power flow to continue to the coil at the end
of the circuit to energize the coil.

In Diagram 3, both contacts are activated, enabling the power to flow across
the two closed contacts to the end of the circuit to energize the coil.

In Diagram 4, neither contact is activated. Both contacts remain open. Power
cannot flow to the coil. The coil is not energized.

Diagram 1 Diagram 2
11.0 Q4.0 11.0 Q4.0
| 1 () | | ()
I \ I \
11.1 11.1
|| |l
I I
Diagram 3 Diagram 4
11.0 Q4.0 11.0 Q4.0
11 4) | | ()
I \ 1T {
11.1 11.1
Il [
I I
—| |— = activated —) =energized

Figure 6-4

6-10

Using Normally Open Contact to Program Contacts in Parallel

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Configuration and Elements of Ladder Logic

Using Normally
Open Contact in
Parallel

Figure 6-4 shows a ladder logic diagram that you can use to program two
normally open contacts connected in parallel to a coil. The first Normally
Open Contact instruction in the logic string checks the signal state of the first
contact (input | 1.0) and produces a result based on the findings (see

Table 6-7). This result can be 1 or 0. A result of 1 means that the contact is
closed and any available power could flow across the contact; a result of 0
means that the contact is open, interrupting the flow of any power available
at the contact. The first Normally Open Contact instruction copies this 1 or 0
to a memory bit in the status word of the programmable logic controller. This
bit is called the “result of logic operation” (RLO) bit.

The second Normally Open Contact instruction in the logic string checks the
signal state of the second contact (I 1.1) and produces a result based on the
findings (see Table 6-7). This result can be 1 or 0, depending on whether the
contact is closed or open. At this point, the second Normally Open Contact
instruction performs a Boolean logic combination. The instruction takes the
result it produced upon checking the signal state of the second contact and
combines this result with the value stored in the RLO bit. The result of this
combination (either 1 or 0) is stored in the RLO bit of the status word,
replacing the old value stored there. The Output Coil instruction (see

Section 8.4) assigns this new value to the coil (output Q 4.0).

The possible results of such a logic combination can be shown in a “truth
table.” In such a logic combination, 1 represents “true” and O represents
“false.” The possible Boolean logic combinations and their results are
summed up in Table 6-9, where “contact is closed” and “power can flow”
correspond to “true” and “contact is open” and “power cannot flow”
correspond to “false” (see Figure 6-4 for the contacts).

Table 6-9 Truth Table: Or

If the result produced by | and the result produced | the result of the logic
checking the signal state | by checking the signal operation shown in
of contact 1 1.0 is state of contact | 1.1is [Figure 6-4 is

1 (contact is closed) 0 (contact is open) 1 (power can flow)

0 (contact is open) 1 (contact is closed) 1 (power can flow)

1 (contact is closed) 1 (contact is closed) 1 (power can flow)

0 (contact is open) 0 (contact is open) 0 (power cannot flow)

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

6-11

Configuration and Elements of Ladder Logic

6.3 Significance of the CPU Registers in Instructions

Explanation

Accumulators

Registers help the CPU perform logic, math, shift, or conversion operations.
These registers are described below.

The two 32-bit accumulators are general purpose registers that you use to
process bytes, words, and double-words.

31

24 23

16 15 8 7 0

High byte

Low byte High byte Low byte

High word

Low word

Accumulator (1 or 2)

Figure 6-5 Areas of an Accumulator

Status Word

Changing of the
Bits in the Status
Word

6-12

The status word contains bits that you can reference in the address of bit
logic instructions. The sections that follow the figure explain the significance
of bits 0 through 8.

215, .29 28 27 26 25 24 23 22 21 20
| BR |cc1| cco| oV | oS | OR | STA| RLO| ﬁ|
Figure 6-6 Structure of the Status Word
Value Meaning
0 Sets the signal state to 0
1 Sets the signal state to 1
X Changes the state

State remains unchanged

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Configuration and Elements of Ladder Logic

First Check

Result of Logic
Operation

Bit 0 of the status word is called the first-check bit #C see Figure 6-6).

At the start of a ladder logic network, the signal state of theiFi§ always

0, unless the previous network ended with —(SAVE). (The bar over the FC
indicates that it is negated, that is, always 0 at the beginning of a ladder logic
network.)

Each logic instruction checks the signal state of théiF@s well as the

signal state of the contact that the instruction addresses. The signal state of
the FChbit determines the sequence of a logic string. If thédiES 0 (at the

start of a ladder logic network), the instruction stores the result in the result

of logic operation bit of the status word and sets théiE® 1. The

checking process is called a first check. The 1 or O that is stored in the RLO
bit after the first check is then referred to as the result of first check.

If the signal state of the Fhit is 1, an operation then links the result of its
signal state check with the RLO formed at the addressed contact since the
first check, and stores the result in the RLO bit.

A rung of ladder logic instructions (logic string) always ends with an output
instruction (Set Coil, Reset Cail, or Output Coil) or a jump instruction related
to the result of logic operation. Such an output instruction resets thé FC

to 0.

Bit 1 of the status word is called the result of logic operation bit (RLO bit,

see Figure 6-6). This bit stores the result of a string of bit logic instructions or
math comparisons. The signal state changes of the RLO bit can provide
information related to power flow.

For example, the first instruction in a network of ladder logic checks the
signal state of a contact and produces a result of 1 or 0. The instruction stores
the result of this signal state check in the RLO bit. The second instruction in
a rung of bit logic instructions also checks the signal state of a contact and
produces a result. Then the instruction combines this result with the value
stored in the RLO bit of the status word according to the principles of
Boolean logic (see First Check above and Chapter 8). The result of this logic
operation is stored in the RLO bit of the status word, replacing the former
value in the RLO bit. Each subsequent instruction in the rung performs a
logic operation on two values: the result produced when the instruction
checks the contact, and the current RLO.

You can, for example, use a Boolean bit logic instruction on a first check to
assign the state of the contents of a Boolean bit memory location to the RLO
or trigger a jump.

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

6-13

Configuration and Elements of Ladder Logic

Status Bit

OR Bit

Overflow Bit

Stored Overflow
Bit

Condition Code 1
and Condition
Code 0

6-14

Bit 2 of the status word is called the status bit (STA bit, see Figure 6-6). The
status bit stores the value of a bit that is referenced. The status of a bit
instruction that has read access to the memory (Normally Open Contact,
Normally Closed Contact) is always the same as the value of the bit that this
instruction checks (the bit on which it performs its logic operation). The

status of a bit instruction that has write access to the memory (Set Coil, Reset
Coil, or Output Coil) is the same as the value of the bit to which the
instruction writes or, if no writing takes place, the same as the value of the bit
that the instruction references. The status bit has no significance for bit
instructions that do not access the memory. Such instructions set the status bit
to 1 (STA=1). The status bit is not checked by an instruction. It is interpreted
during program test (program status) only.

Bit 3 of the status word is called the OR bit (see Figure 6-6). The OR bit is
needed if you use Contact instructions to perform logical Or operations with
an And function. Logical Or operations correspond to arranging contacts in
parallel. The And function corresponds to arranging contacts in series (see
Sectio). An And function may contain the following instructions:
Normally Open Contact and Normally Closed Contact. The OR bit shows
these instructions that a previously executed And function has supplied the
value 1 and thus forestalls the result of the logical Or operation. Any other
bit-processing command resets the OR bit.

Bit 5 of the status word is called the overflow bit (OV bit, see Figure 6-6).
The OV bit indicates a fault. It is set by a math instruction or a floating-point
compare instruction after a fault occurs (overflow, illegal operation, illegal
number). The bit is set or reset in accordance with the result of the math or
comparison operation (fault).

Bit 4 of the status word is called the stored overflow bit (OS bit, see

Figure 6-6). The OS bit is set together with the OV bit if an error occurs.
Because the OS bit remains set after the error has been eliminated (unlike the
OV bit), it indicates whether or not a error occurred in one of the previously
executed instructions. The following commands reset the OS bit: JOS (jump
after stored overflow, STL programming), the block call commands, and the
block end commands.

Bits 7 and 6 of the status word are called condition code 1 and condition
code 0 (CC 1 and CC 0, see Figure 6-6). CC 1 and CC 0 provide information
on the following results or bits:

¢ Result of a math operation
¢ Result of a comparison
* Result of a digital operation

¢ Bits that have been shifted out by a shift or rotate command

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Configuration and Elements of Ladder Logic

Tables 6-10 through 6-15 list the significance of CC 1 and CC 0 after your
program executes certain instructions.

ger

e

Table 6-10 CC 1 and CC 0 after Math Instructions, without Overflow
CC1 | CCO Explanation
0 0 Result=0
0 1 Result< 0
1 0 Result >0
Table 6-11 CC 1 and CC 0 after Integer Math Instructions, with Overflow
CC1l1 | cCcCo Explanation
0 0 Negative range overflow in Add Integer and Add Double Intg
Negative range overflow in Multiply Integer and Multiply
Double Integer
0 1 Positive range overflow in Add Integer, Subtract Integer, Adg
Double Integer, Subtract Double Integer, Twos Complement
Integer, and Twos Complement Double Integer
Positive range overflow in Multiply Integer and Multiply Douk
1 0 Integer, Divide Integer, and Divide Double Integer
Negative range overflow in Add Integer, Subtract Integer, Ad
Double Integer, and Subtract Double Integer
1 1 Division by 0 in Divide Integer, Divide Double Integer, and
Return Fraction Double Integer
Table 6-12 CC 1 and CC 0 after Floating-Point Math Instructions, with Overflow
CC1 | CCO Explanation
0 0 Gradual underflow
0 1 Negative range overflow
1 0 Positive range overflow
1 1 lllegal operation

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

6-15

Configuration and Elements of Ladder Logic

Binary Result Bit

6-16

Table 6-13 CC 1 and CC 0 after Comparison Instructions

CCl | CcCo Explanation
0 0 IN2 = IN1
0 1 IN2 < IN1
1 0 IN2 > IN1
1 1 IN1 or IN2 is an illegal floating-point number

Table 6-14 CC 1 and CC 0 after Shift and Rotate Instructions

CCcC1i1|cco Explanation
0 0 Bit shifted out last = 0
1 0 Bit shifted out last = 1

Table 6-15 CC 1 and CC 0 after Word Logic Instructions

CC1 | cCCco Explanation
0 0 Result =0
1 0 Result <> 0

Bit 8 of the status word is called the binary result bit (BR bit, see Figure 6-6).
The BR bit forms a link between the processing of bits and words. This bit
enables your program to interpret the result of a word operation as a binary
result and to integrate this result in a binary logic chain. Viewed from this
angle, the BR represents a machine-internal memory marker into which the
RLO is saved prior to an RLO-changing word operation, so that it is still
available for the continuation of the interrupted bit chain after the operation
has been carried out.

For example, the BR bit makes it possible for you to write a function block
(FB) or a function (FC) in statement list (STL) and then call the FB or FC
from ladder logic (LAD).

When writing a function block or function that you want to call from Ladder,
no matter whether you write the FB or FC in STL or LAD, you are
responsible for managing the BR bit. The BR bit corresponds to the enable
output (ENO) of a Ladder box. You should use the SAVE instruction (in
STL) or the or the ——(SAVE) coil (in LAD) to store an RLO in the BR bit
according to the following criteria:

e Store an RLO of 1 in the BR bit for a case where the FB or FC is
executed without error.

e Store an RLO of 0 in the BR bit for a case where the FB or FC is
executed with error

You should program these instructions at the end of the FB or FC so that
these are the last instructions that are executed in the block.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Configuration and Elements of Ladder Logic

i’i Warning
Possible unintentional resetting of the BR bit to 0.

When writing FBs and FCs in Ladder, if you fail to manage the BR bit as
described above, one FB or FC may overwrite the BR bit of another FB
or FC.

To avoid this problem, store the RLO at the end of each FB or FC as
described above.

Meaning of The enable input (EN) and enable output (ENO) parameters of a ladder logic
EN/ENO box function according to the following principles:

e If EN is not activated (that is, if it has a signal state of 0), the box does
not carry out its function and ENO is not activated (that is, it also has a
signal state of 0).

e If ENis activated (that is, if it has a signal state of 1) and the box to
which EN belongs executes its function without error, ENO is also
activated (that is, it also has a signal state of 1).

e If ENis activated (that is, if it has a signal state of 1) and an error occurs
while the box to which EN belongs is executing its function, ENO is not
activated (that is, its signal state is 0).

When you call a system function block (SFB) or a system function (SFC) in
your program, the SFB or SFC indicates whether the CPU was able to
execute the function with or without errors by providing the following
information in the binary result bit:

¢ If an error occurred during execution, the BR bit is 0.

e |f the function was executed with no error, the BR bit is 1.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 6-17

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Addressing

Chapter Overview

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Section Description Page
7.1 Overview 7-2
7.2 Types of Addresses 7-4

7-1

Addressing

7.1 Overview

What Is
Addressing?

Immediate and
Direct Addressing

7-2

Many ladder logic instructions work together with one or more addresses
(operands). This address indicates a constant or a place where the instruction
finds a variable on which to perform a logic operation. This place can be a

bit, a byte, a word or a double word of the address.

Possible addresses are, e.g.:
e A constant, the value of a timer or counter, or an ASCII character string
e A bitin the status word of the programmable logic controller

e A data block and a location within the data block area

The following types of addressing are available:
¢ Immediate addressing (enter a constant as the address)
¢ Direct addressing (enter a variable as the address)

Figure 7-1 shows an example of immediate and direct addressing. The
function of the box is to compare two input parameters (in this case, two
16-bit integers) to see if the first input is less than or equal to the second. The
constant 50 is entered as input parameter IN1 Memory word MW200, a
location in memory, is entered as input parameter IN2.

Because the constant 50 in the example is the actual value with which IN1 of
the box is to work, 50 is considered an immediate address of the instruction
box. Because MW200 points to a location in memory where there is another
value with which IN2 of the box is to work, MW200 is considered a direct
address. MW200 is a location, not the actual value itself.

CMP_|
<=
— IN1
50
Mw200 —|IN2
Figure 7-1 Immediate and Direct Addressing

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Addressing

Table 7-1 Constant Formats for Immediate Addressing Using Addresses of Elementary Data Types

Type and Size in| Format Options | Range and Number Notation Example

Description | Bits (Lowest Value to Highest Value)

BOOL 1 Boolean Text TRUE/FALSE TRUE

(Bit)

BYTE 8 Hexadecimal B#16#0 to B#16#FF B#16#10

(Byte) byte#16#10

WORD 16 [Binary 2#0 to 2#0001_0000_0000_0000

(Word) 2#1111 1111 1111 1111
Hexadecimal W#16#0 to W#16#FFFF W#16#1000

word16#1000
BCD C#0 to C#999 C#998
Unsigned decimal B#(0,0) to B#(255,255) B#(10,20)
byte#(10,20)

DWORD 32 | Binary 2#0 to 2#1000_0001_0001_1000_

(Double 2#1111_1111 1111 1111 1011_1011_0111 1111

word) 1111 1111 1211 1111
Hexadecimal DW#16#0000_0000 to DW#16#00A2_1234
Unsigned decimal DW#16#FFFF_FFFF dword#16#00A2_1234

B#(0,0,0,0) to B#(1,14,100,120)
B#(255,255,255,255) byte#(1,14,100,120)

INT 16 | Signed decimal |-32768 to 32767 1

(Integer)

DINT 32 | Signed decimal | L#-2147483648 to L#2147483647L#1

(Double

integer)

REAL 32 |IEEE Upper limit: +3.402823e+38 1.234567e+13

(Floating floating point Lower limit: +1.175495e-38

point) (see also Table C-5)

S5TIME 16 |[S5Timein S5T#0H_OM_0S_10MS to S5T#0H_1M_0S_OMS

(SIMATIC 10-ms units (as | S5T#2H_46M_30S_0OMS and S5TIME#OH_1M_0S_O0OMS

time) default value) S5T#0H_OM_0S_OMS

TIME 32 |IEC timein 1-ms| T#-24D_20H_31M_23S_648MS | T#OD_1H_1M_0S_0OMS

(IEC time) units, signed to TIME#0D_1H_1M_0S_OMS
integer T#24D_20H_31M_23S_647MS

DATE 16 [IEC date D#1990-1-1 to D#1994-3-15

(IEC date) in 1-day units D#2168-12-31 DATE#1994-3-15

TIME_OF_ 32 | Time of day in TOD#0:0:0.0 to TOD#1:10:3.3

DAY 1-ms units TOD#23:59:59.999 TIME_OF_DAY#1:10:3.3

(Time of

day)

CHAR 8 Character 'A,B’, and so on 'E’

(Character)

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

7-3

Addressing

7.2 Types of Addresses

Possible An address of a ladder logic instruction can indicate any of the following
Addresses items:

A bit whose signal state is to be checked

A bit to which the signal state of the logic string is assigned
A bit to which the result of logic operation (RLO) is assigned
A it that is to be set or reset

A number that indicates a counter that is to be incremented or
decremented

A number that indicates a timer to be used

An edge memory bit that stores the previous result of logic operation
(RLO)

An edge memory bit that stores the previous signal state of another
address

A byte, word, or double word that contains a value with which the ladder
element or box is to work.

The number of a data block (DB or DI) that is to be opened or created

The number of a function (FC), system function (SFC), function block
(FB), or system function block (SFB) that is to be called

A label that is to be jumped to

Address Identifiers Variables as addresses include an address identifier and a location within the
memory area indicated by the address identifier. An address identifier can be
one of the following two basic types:

7-4

An address identifier that indicates both of the following:

— The memory area in which an instruction finds a value (data object)
on which to perform an operation (for example, | for the
process-image input area of memory, see Table 6-5)

— The size of the value (data object) on which the instruction is to
perform its operation (for example, B for byte, W for word, and D for
double word, see Table 6-5)

An address identifier that indicates a memory area but no size of a data
object in that area (for example, an identifier that indicates the area T for
timer, C for counter, or DB or DI for data block, plus the number of that
timer, counter, or data block, see Table 6-5.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Addressing

Pointers

Working with Word
or Double Word as
Data Object

A pointer is a device that identifies the location of a variable. A pointer
contains an address instead of a value. When assigning an actual parameter
for the parameter type “pointer,” you provide the memory address. STEP 7
allows you to enter the pointer in either a pointer format or simply as an
address (such as M 50.0). The following is an example of the pointer format
for accessing data starting at M 50.0:

P#M50.0

If you are working with an instruction whose address identifier indicates a
memory area of your programmable logic controller and a data object that is
either a word or a double word in size, you need to be aware of the fact that
the memory location is always referenced as a byte location. This byte
location is the smallest byte number or the number of the high byte. For
example, the address in the statement shown in Figure 7-2 references four
successive bytes in memory area M, starting at byte 10 (MB10) and going
through byte 13 (MB13).

Statement: L MD10

Address identifier Byte location

Figure 7-2 Example of Memory Location Referenced as Byte Location

Figure 7-3 illustrates data objects of the following sizes:
¢ Double word: memory double word MD10

¢ Word: memory words MW10, MW11, and MW12

* Byte: memory bytes MB10, MB11, MB12, and MB13

When you use absolute addresses that are a word or a double word in width,
make sure that you do not create any byte assignments that overlap.

- MWI10 MW12 —

MB10 MB11 MB12 MB13

-— MWI11l —»

MD10

Figure 7-3 Referencing a Memory Location as a Byte Location

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

7-5

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Bit Logic Instructions

Chapter Overview Section Description Page
8.1 Overview
8.2 Normally Open Contact
8.3 Normally Closed Contact
8.4 Output Coil
8.5 Midline Output
8.6 Invert Power Flow
8.7 Save RLO to BR Memory
8.8 Set Coil
8.9 Reset Coil [8-10
8.10 Set Counter Value 3-11
8.11 Up Counter Caoll 8-1
8.12 Down Counter Coil 8-1
8.13 Pulse Timer Coll 8-1
8.14 Extended Pulse Timer Coil 8-1
8.15 On-Delay Timer Coll 8-1
8.16 Retentive On-Delay Timer Coil 8-1
8.17 Off-Delay Timer Coil 8-1
8.18 Positive RLO Edge Detection 8-19
8.19 Negative RLO Edge Detection 8-2
8.20 Address Positive Edge Detection 8-2
8.21 Address Negative Edge Detection 8-2
8.22 Set Reset Flipflop 8-2
8.23 Reset Set Flipflop 8-2

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Bit Logic Instructions

8.1 Overview

Explanation

Functions

8-2

Bit logic instructions work with two digits, 1 and 0. These two digits form

the base of a number system called the binary system. The two digits 1 and 0
are called binary digits or bits. In the world of contacts and coils, a 1

indicates activated or energized, and a O indicates not activated or not
energized.

The bit logic instructions interpret signal states of 1 and 0 and combine them
according to Boolean logic. These combinations produce a result of 1 or 0
that is called the “result of logic operation” (RLO, see Setidn 6.3). The logic
operations that are triggered by the bit logic instructions perform a variety of
functions.

There are bit logic instructions to perform the following functions:

¢ Normally Open Contact and Normally Closed Contact each check the
signal state of a contact and produce a result that is either copied to the
result of logic operation (RLO) bit or is combined with the RLO. If these
contacts are connected in series, they combine the result of their signal
state check according to the And truth table (see Table 6-8); if they are
connected in parallel, they combine their result according to the Or truth
table (see Table 6-9).

¢ OQutput Coil and Midline Output assign the RLO or store it temporarily.
¢ The following instructions react to an RLO of 1:

— Set Coil and Reset Coil

— Set Reset and Reset Set Flipflops

¢ Other instructions react to a positive or negative edge transition to
perform the following functions:

— Increment or decrement the value of a counter
— Start a timer
— Produce an output of 1
¢ The remaining instructions affect the RLO directly in the following ways:
— Negate (invert) the RLO
— Save the RLO to the binary result bit of the status word

In this chapter, the counter and timer coils are shown in their international
and SIMATIC forms.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Bit Logic Instructions

8.2 Normally Open Contact

Description

You can use the Normally Open Contact (Address) instruction to check the
signal state of a contact at a specified address. If the signal state at the
specified address is 1, the contact is closed and the instruction produces a
result of 1. If the signal state at the specified address is 0, the contact is open
and the instruction produces a result of 0.

When Normally Open Contact (Address) is the first instruction in a logic
string, this instruction stores the result of its signal check in the result of logic
operation (RLO) bit.

Any Normally Open Contact (Address) instruction that is not the first
instruction in a logic string combines the result of its signal state check with
the value that is stored in the RLO bit. The instruction makes the
combination in one of the two following ways:

e If the instruction is used in series, it combines the result of its signal state
check according to the And truth table.

¢ If the instruction is used in parallel, it combines the result of its signal
state check according to the Or truth table.

Table 8-1 Normally Open Contact (Address) Element and Parameter

LAD Element

Parameter | Data Type | Memory Area Description

<address>

BOOL
<address>| TIMER
COUNTER

I,Q,M, T, C, | The address indicates the bit whose
D, L signal state is checked.

l l Power flows if one of the following conditions exists:

* The signal state is 1 at inputs | 0.0 and 1 0.1
® Orthe signal state is 1 at input | 0.2

Status Word Bits

BR

Write -

CC1 cCco ov (O OR STA RLO

=3

- - - - X X X

Figure 8-1 Normally Open Contact (Address)

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

8-3

Bit Logic Instructions

8.3 Normally Closed Contact

Description

You can use the Normally Closed Contact (Address) instruction to check the
signal state of a contact at a specified address. If the signal state at the
specified address is 0, the contact is closed and the instruction produces a
result of 1. If the signal state at the specified address is 1, the contact is open
and the instruction produces a result of 0.

When Normally Closed Contact (Address) is the first instruction in a logic
string, this instruction stores the result of its signal check in the result of logic
operation (RLO) bit.

Any Normally Closed Contact (Address) instruction that is not the first
instruction in a logic string combines the result of its signal state check with
the value that is stored in the RLO bit. The instruction makes the
combination in one of the two following ways:

e If the instruction is used in series, it combines the result of its signal state
check according to the And truth table.

¢ If the instruction is used in parallel, it combines the result of its signal
state check according to the Or truth table.

Table 8-2 Normally Closed Contact (Address) Element and Parameter

LAD Element

Parameter | Data Type | Memory Area Description

<address>

BOOL
<address>| TIMER
COUNTER

I,Q, M, T,C, | The address indicates the bit whose
D, L signal state is checked.

Power flows if one of the following conditions exists:
® The signal state is 1 atinputs 10.0and 1 0.1
® Or the signal state is 0 at input | 0.2

Status Word Bits

BR
Write -

CCl1 CcCoO ov oS OR STA RLO

=3

- - - - X X X

Figure 8-2 Normally Closed Contact (Address)

8-4

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Bit Logic Instructions

8.4 Output Coil

Description

Table 8-3 Output Coi

The Output Coil instruction works like a coil in a relay logic diagram. The
coil at the end of the circuit is either energized or not energized depending on
the following criteria:

If power can flow across the circuit to reach the coil (that is, the signal
state of the circuit is 1), the power energizes the coil.

If power cannot flow across the entire circuit to reach the coil (that is, the
signal state of the circuit is 0), the power cannot energize the coil.

The ladder logic string represents the circuit. The Output Coil instruction
assigns the signal state of the ladder logic string to the coil that the
instruction addresses (this is the same as assigning the signal state of the
RLO bit to the address). If there is power flow across the logic string, the
signal state of the logic string is 1; otherwise the signal state is 0.

The Output Coil instruction is affected by the Master Control Relay (MCR).
For more information on how the MCR functions, see Seftiof 20.5.

You can place an Output Coil only at the right end of a logic string. Multiple
Output Coils are possible. You cannot place an output coil alone in an
otherwise empty network. The coil must have a preceding link.

You can create a negated output by using the Invert Power Flow instruction.

| Element and Parameter

LAD Element

Parameter | Data Type | Memory Area Description

<address>

—C >

The address indicates the bit to whig
the signal state of the logic string is
assigned.

<address> BOOL ,Q,M, D, L

The signal state of output Q 4.0 is 1 if one of the
following conditions exists:

4.0 . . .
Q * The signal state is 1 at inputs 1 0.0 and 1 0.1

(

\ and 1 0.3.

103 Q41 Or the signal state is 0 at input 1 0.2

—C)

The signal state of output Q4.1 is 1 if one of the
following conditions exists:

® The signal state is 1 at inputs 1 0.0 and | 0.1
and 10.3.

Or the signal state is 0 at input 1 0.2

and 1 atinput10.3

Status Word Bits

BR

Write

CC1

FC
0

CCo

ov

OR
0

STA
X

RLO

Figure 8-3

Output Call

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

8-5

Bit Logic Instructions

8.5 Midline Output

Description The Midline Output instruction is an intermediate assigning element that
stores the RLO. This intermediate assigning element saves the bit logic
combination of the last open branch until the assigning element is reached. In
a series with other contacts, the Midline Output functions as a normal
contact.

The Midline Output instruction is affected by the Master Control Relay
(MCR). For more information on how the MCR functions, see Seltioh 20.5.

Certain restrictions apply to the placement of a Midline Output. For example,
a Midline Output element can never be located at the end of a network or at
the end of an open branch. See also Sdctibn 6.1.

You can create a negated output by using the Invert Power Flow instruction.

Table 8-4 Midline Output Element and Parameter
LAD Element Parameter | Data Type | Memory Area Description
<address> The address indicates the bit to which
1
— #)— <address> BOOL L, Q. M.D,L the RLO is assigned.

1 Forthe Midline Output instruction, you can only use an address in the L memory area if you declare itin VAR_TEMP.

You cannot use the L memory area for an absolute address with this instruction.

11.0 111 MO.0 11.2 113 M1.1 M 2.2 Q4.0

%) | NorH—@®—noT H—#——()

The following Midline Outputs have the following RLOs:
11.0 11.1

M 0.0 has the RLO of _| |_| I_

120 112 MO00 112 11.3
M 1.1 has the RLO of _| |_| l <#> l l l l

INOT |

M 2.2 has the RLO of the complete bit logic combination.

Status Word Bits

BR CCl1 CCo oV oS OR STA RLO FC
Write - - - - - 0 X -

Figure 8-4 Midline Output

Ladder Logic (LAD) for S7-300 and S7-400
8-6 C79000-G7076-C504-02

Bit Logic Instructions

8.6 Invert Power Flow

Description The Invert Power Flow instruction negates the RLO.
Table 8-5 Invert Power Flow Element
LAD Element Parameter | Data Type | Memory Area Description
—| NOT |— None - - -
10.0 Q4.0 o _
Output Q 4.0 is 1 if one of the following
I | NOT' () u |
' ' ' \ conditions exists:
101 102 * The signal state at input | 0.0 is NOT 1
| | * Or the signal state is NOT 1 at either

B

input 1 0.1 or input | 0.2 or both.

Status Word Bits

BR
Write -

CCi1 Cco ov

(ON] OR

STA

RLO

e

Figure 8-5 Invert Power Flow

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Bit Logic Instructions

8.7 Save RLO to BR Memory

Description The Save RLO to BR Memory instruction saves the RLO to the BR bit of the
status word.

Table 8-6 Save RLO to BR Memory

LAD Element Parameter | Data Type | Memory Area Description

—CsAvE) None - - -

| (s AV@ The status of the rung (= RLO)
is saved to the BR bit before
FC10 is called.

Status Word Bits

BR CC1 CCoO (0)Y] (O OR STA RLO
Write X - - - - - - -

e

Figure 8-6 Save RLO to BR Memory

Ladder Logic (LAD) for S7-300 and S7-400
8-8 C79000-G7076-C504-02

Bit Logic Instructions

8.8 Set Call

Description The Set Coil instruction is executed only if the RLO = 1. If the RLO = 1, this
instruction sets its specified address to 1. If the RLO = 0, the instruction has
no effect on the specified address. The address remains unchanged.
The Set Coil instruction is affected by the Master Control Relay (MCR). For
more information on how the MCR functions, see Segtior] 20.5.

Table 8-7 Set Coil Element and Parameter

LAD Element Parameter | Data Type | Memory Area Description
<address> indi i i
S) <address> BOOL I,Q, M, D, L 'llj'zesstddress indicates the bit that is {o

The signal state of output Q 4.0 is set to 1 if one of
the following conditions exists:
Q4.0 * The signal state is 1 atinput 1 0.0 And 1 0.1
(S) * Orthe signal state is 0 at input 1 0.2.

If the RLO of the branch is 0, the signal state of
output Q 4.0 remains unchanged.

Status Word Bits

BR CC1 CCO ov oS OR STA RLO FC
Write - - - 0 0

Figure 8-7 Set Coil

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 8-9

Bit Logic Instructions

8.9 Reset Call
Description The Reset Coil instruction is executed only if the RLO = 1. If the RLO =1,
this instruction resets its specified address to 0. If the RLO = 0, the
instruction has no effect on its specified address. The address remains
unchanged.
The Reset Coil instruction is affected by the Master Control Relay (MCR).
For more information on how the MCR functions, see SeLtior} 20.5.
Table 8-8 Reset Coil Element and Parameter
LAD Element Parameter | Data Type | Memory Area Description
<address> BOOL indi i i
R) <address> TIMER :3Q|_ M, T, C, 'tl)'l‘;lerez;(l(:ress indicates the bit that is {o
COUNTER ' ’

The signal state of output Q 4.0 is reset to 0 if one
of the following conditions exists:
Q4.0 ® The signal state is 1 atinputs10.0and | 0.1

(R) ® Or the signal state is 0 at input | 0.2

If the RLO of the branch is 0, the signal state of
output Q 4.0 remains unchanged.

Status Word Bits

BR
Write -

cCCl1 Ccco oV 0s OR STA RLO FC
- - - - 0 X - 0

Figure 8-8 Reset Coil

8-10

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Bit Logic Instructions

8.10 Set Counter Value

Description You can use the Set Counter Value (SC) instruction to place a preset value
into the counter that you specify. The instruction is executed only if the RLO
has a positive edge (that is, a transition from 0 to 1 takes place in the RLO).

Table 8-9 Set Counter Value Element and Parameters, with SIMATIC and International Short Name
LAD Element Parameter | Data Type | Memory Area Description
<address> Counter | COUNTER C The address indicates the number of the
(SZ) number counter that is to be preset with a valde.
Preset — I, Q, M, D, L | The value for presetting can be in the

—(SC) value range of 0 to 999. C# should precede [the

<Preset value> value to indicate binary coded decimal
(BCD) format, for example C#100.

If the signal state of input | 0.0 changes from 0 to 1
(that is, if there is a positive edge in the RLO),

10.0 C>s counter C 5 is preset with the value of 100. The C#
}—(SC) indicates that you are entering a value in BCD
C#100 format. When you save the rung, this value will be

represented as w#16#100 on your screen.

If there is not a positive edge, the value of counter
C 5 remains unchanged.

Status Word Bits

BR CC1 CCoO ov os OR STA RLO
Write - - — - - 0 X -

°d

Figure 8-9 Set Counter Value

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 8-11

Bit Logic Instructions

8.11 Up Counter Colil

Description The Up Counter Coil (CU) instruction increments the value of a specified
counter by one if the RLO has a positive edge (that is, a transition from 0 to 1
takes place in the RLO) and the value of the counter is less than 999. If the
RLO does not have a positive edge, or if the counter is already at 999, the
value of the counter does not change.

The Set Counter Value instruction sets the value of the counter (see

Sectior 8.1).
Table 8-10 Up Counter Coil Element and Parameter, with SIMATIC and International Short Name
LAD Element Parameter | Data Type Memory Area Description
<address> Counter | COUNTER C The address indicates the number of
—(zv) number the counter that is to be incremented.
—(cw

If the signal state of input | 0.0 changes from
10 0to 1 (that s, if there is a positive edge in the

10.0 C
(CU) RLO), the value of counter C 10 is
incremented by 1 (unless the value of C 10 is
equal to 999).

If there is not a positive edge, the value of
C 10 remains unchanged.

Status Word Bits

BR CC1 CCO (0)Y] (O OR STA RLO
Write - - - - - 0 - -

°d

Figure 8-10 Up Counter Coil

Ladder Logic (LAD) for S7-300 and S7-400
8-12 C79000-G7076-C504-02

Bit Logic Instructions

8.12 Down Counter Coil

Description The Down Counter Coil (CD) instruction decrements the value of a specified
counter by one if the RLO has a positive edge (that is, a transition from 0 to 1
takes place in the RLO) and the value of the counter is more than 0. If the
RLO does not have a positive edge, or if the counter is already at 0, the value
of the counter does not change.

The Set Counter Value instruction sets the value of the counter (see
Sectior] 8.10).
Table 8-11 Down Counter Coil Element and Parameter, with SIMATIC and International Short Name
LAD Element Parameter | Data Type Memory Area Description
<address> Counter | COUNTER C The address indicates the number of
—<ZR> number the counter that is to be
decremented.
—(»
If the signal state of input | 0.0 changes from
10.0 Cc10 ¥ ! » .
:) 0to 1 (that is, if there is a positive edge in
o) the RLO), the value of counter C 10 is
decremented by 1 (unless the value of C 10
is equal to 0).
If there is not a positive edge, the value of
C 10 remains unchanged.
Status Word Bits
BR CC1 CCO ov (O8] OR STA RLO FC
Write — - - - - 0 - - 0
Figure 8-11 Down Counter Coil

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

8-13

Bit Logic Instructions

8.13 Pulse Timer Coil

Description The Pulse Timer Coil (SP) instruction starts a specified timer with a given
time value if the RLO has a positive edge (that is, a transition from 0 to 1
takes place in the RLO). The timer continues to run with the specified time
as long as the RLO is positive. A signal state check of the timer number for 1
produces a result of 1 as long as the timer is running. If the RLO changes
from 1 to O before the specified time has elapsed, the timer is stopped. In this
case, a signal state check for 1 produces a result of 0.

Time units are d (days), h (hours), m (minutes), s (seconds), and ms
(milliseconds). For information on the location of a timer in memory and the
components of a timer, see Secfion 9.1.

Table 8-12 Pulse Timer Coil Element and Parameters, with SIMATIC and International Short Name

LAD Element Parameter | Data Type Memory Area Description
<address> Timer TIMER T The address indicates the number of
—(s) number the timer that is to be started.

—(spP)

<Time value>

Time value| S5TIME ,Q,M, D, L Time value (S5TIME format)

If the signal state of input | 0.0 changes from 0
to 1 (that is, there is a positive edge in the
T5 RLO), timer T 5 is started. The timer continues

10.0
- —ED) to run with the specified time of 2 seconds as

long as the signal state of input 1 0.0 is 1. If the

SST# 28 signal state of input | 0.0 changes from 1 to 0
before the specified time has elapsed, the
timer stops.

T5 Q4.0

The signal state of output Q 4.0 is 1 as long as

—‘ }—<) the timer is running.

Examples of timer values:
S5T#2s = 2 seconds
S5T#12m_18s = 12 minutes and 18 seconds

Status Word Bits

BR CCl1 CCO ov oS OR STA RLO FC
Write - - - - - 0 - - 0

Figure 8-12 Pulse Timer Coil

Ladder Logic (LAD) for S7-300 and S7-400
8-14 C79000-G7076-C504-02

Bit Logic Instructions

8.14 Extended Pulse Timer Coill

Description

The Extended Pulse Timer Coil (SE) instruction starts a specified timer with

a given time value if the RLO has a positive edge (that is, a transition from

0 to 1 takes place in the RLO). The timer continues to run with the specified
time even if the RLO changes to 0 before the time has elapsed. A signal state
check of the timer number for 1 produces a result of 1 as long as the timer is
running. The timer is restarted (retriggered) with the specified time if the

RLO changes from 0 to 1 while the timer is running. For information on the
location of a timer in memory and the components of a timer, see

Sectioh 9.]1.

Table 8-13 Extended Pulse Timer Coil Element and Parameters, with SIMATIC and International Short Name

LAD Element Parameter | Data Type Memory Area Description
<address> Timer TIMER T The address indicates the numbef of
—(sv) number the timer that is to be started.
(sB) Time value| S5TIME | 1,Q,M,D,L | Time value (S5TIME format)
Time value
If the signal state of 1 0.0 changes from 0 to 1 (that
10.0 TS5 is, there is a positive edge in the RLO), timer T 5 is
—‘ }—(SE) started. The timer continues to run without regard to
S5T#2s a negative edge in the RLO. If the signal state of
I 0.0 changes from 0 to 1 before the specified time
has elapsed, the timer is retriggered.
T5 Q4.0
}—() The signal state of output Q 4.0 is 1 as long as the
timer is running.

Status Word Bits

BR
Write -

cc1 cco oV oS OR STA RLO FC
- - - - 0 - - 0

Figure 8-13 Extended Pulse Timer Coil

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

8-15

Bit Logic Instructions

8.15 On-Delay Timer Coll

Description The On-Delay Timer Coil (SD) instruction starts a specified timer if the RLO
has a positive edge (that is, a transition from 0 to 1 takes place in the RLO).
A signal state check of the timer for 1 produces a result of 1 when the
specified time has elapsed without error and the RLO is still 1. When the
RLO changes from 1 to 0 while the timer is running, the timer is stopped. In
this case, a signal state check for 1 always produces the result 0. For
information on the location of a timer in memory and the components of a
timer, see Secti.l.

Table 8-14 On-Delay Timer Coil Element and Parameters, with SIMATIC and International Short Name

LAD Element Parameter | Data Type Memory Area Description
<address> Timer TIMER T The address indicates the number of
—(sE) number the timer that is to be started.
—(sD : :
Time value| S5TIME I,Q,M,D, L Time value (S5TIME format)
Time value
10.0 TS5 If the signal state of input | 0.0 changes from
_‘ }—<5D> O0to 1 (that is, there is a positive edge in the
S5T# 2s RLO), timer T 5 is started. If the time elapses

and the signal state of input 1 0.0 is still 1,
output Q 4.0 is 1. If the signal state of input
TS Q4.0 1 0.0 changes from1 to O, the timer is stopped,

}—<) and output Q 4.0 is 0.

Status Word Bits

BR CC1 CCO OV 0s OR STA RLO
Write - - - - - 0 - -

°d

Figure 8-14 On-Delay Timer Coil

Ladder Logic (LAD) for S7-300 and S7-400
8-16 C79000-G7076-C504-02

Bit Logic Instructions

8.16 Retentive On-Delay Timer Coil

Description

The Retentive On-Delay Timer Coil (SS) instruction starts a specified timer

if the RLO has a positive edge (that is, a transition from 0 to 1 takes place in
the RLO). The timer continues to run with the specified time even if the RLO
changes to 0 before the time elapses. A signal state check of the timer
number for 1 produces a result of 1 when the time has elapsed, without
regard to the RLO. The timer is restarted (retriggered) with the specified time
if the RLO changes from 0 to 1 while the timer is running. For information

on the location of a timer in memory and the components of a timer, see

Sectiof 9.1

Table 8-15 Retentive On-Delay Timer Coil Element and Parameters, with SIMATIC and International Short Name

LAD Element Parameter | Data Type Memory Area Description
<address> Timer TIMER T The address indicates the numbe
—(SS) number of the timer that is to be started.
Time value Time value| SS5TIME LQ,M, D, L Time value (S5TIME format)

T5

10.0 T
—‘ }—(SF) If the signal state of input | 0.0 changes from 1

}—<) timer is running.

5

S5T# 2s to 0, the timer is started.

The signal state of output Q 4.0 is 1 when the

Q4.0 signal state of input 1 0.0 is 1, or when the

Status Word Bits

BR
Write -

cc1 cco oV oS OR STA RLO FC
- - - - 0 - - 0

Figure 8-15 Off-Delay Timer Coll

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

8-17

Bit Logic Instructions

8.17 Off-Delay Timer Coll

Description The Off-Delay Timer Coil (SF) instruction starts a specified timer if the RLO
has a negative edge (that is, a transition from 1 to 0 takes place in the RLO).
The result of a signal state check of the timer number for 1 is 1 when the
RLO is 1, or when the timer is running. The timer is reset when the RLO
goes from 0 to 1 while the timer is running. The timer is not restarted until
the RLO changes from 1 to 0.

Parameters For information on the location of a timer in memory and the components of
a timer, see Sectipn 9.1.

Table 8-16 Off-Delay Timer Coil Element and Parameters, with SIMATIC and International Short Name

LAD Element Parameter | Data Type Memory Area Description
<address> Timer TIMER T The address indicates the numbe
—(SA) number of the timer that is to be started.
—(sP . .
Time value| S5TIME ,Q,M, D, L Time value (S5TIME format)
Time value
_‘I 0.0 s If the signal state of input | 0.0 changes from 1
<SF> to 0, the timer is started.
S5T# 2s If the signal state of 1 0.0 changes from 0 to 1,
the timer is reset.
T5 Q4.0 The signal state of output Q 4.0 is 1 when the
:) signal state of input 1 0.0 is 1, or when the
timer is running.

Status Word Bits

BR CC1 CCO OV oS OR STA RLO FC
Wiite - - - - - 0 - - 0

Figure 8-16 Off-Delay Timer Coil

Ladder Logic (LAD) for S7-300 and S7-400
8-18 C79000-G7076-C504-02

Bit Logic Instructions

8.18 Positive RLO Edge Detection

Description The operatioriPositive RLO Edge Detectimacognizes a change in the
entered address from 0 to 1 (rising edge) and displays this as RLO = 1 after
the operation. The current signal state in the RLO is compared with the
signal state of the address, the edge memory bit. If the signal state of the
address is 0 and the RLO was 1 before the operation, the RLO will be 1
(impulse) after the operation, and 0 in all other cases. The RLO prior to the
operation is stored in the address.

Certain restrictions apply to the placement of the Positive RLO Edge
Detection element (see Secfion] 6.1).

Table 8-17 Positive RLO Edge Detection Element and Parameter

LAD Element Parameter | Data Type | Memory Area Description
<address1> o
N The address indicates the edge mempry
—(P)— <address1y BOOL QMD bit that stores the previous RLO.
10.0 10.1 M0.0 CAS1 Ed bit M 0.0 the old
e memory bi .0 saves the o
| || (P)—CmP ; 1

state of the RLO from the complete bit
logic combination. If there is a signal

i change at the RLO from O to 1, the
_| f program jumps to label CAS1.

Status Word Bits

BR CcC1 CCO ov oS OR STA RLO
Write - - - - - X X X

=3

Figure 8-17 Positive RLO Edge Detection

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 8-19

Bit Logic Instructions

8.19 Negative RLO Edge Detection

Description The operatioNegative RLO Edge Detectiogcognizes a change in the
entered address from 1 to O (falling edge) and displays this as RLO = 1 after
the operation. The current signal state in the RLO is compared with the
signal state of the address, the edge memory bit. If the signal state of the
address is 1 and the RLO was 0 before the operation, the RLO will be 0
(impulse) after the operation, and 1 in all other cases. The RLO prior to the
operation is stored in the address.

Certain restrictions apply to the placement of the Negative RLO Edge
Detection element (see Secfior 6.1).

Table 8-18 Negative RLO Edge Detection Element and Parameter

LAD Element Parameter | Data Type | Memory Area Description
<address1> T
The address indicates the edge mempry
—(ND— <addressly BOOL QMD bit that stores the previous RLO.

10.0 10.1 M0.0 CAS1 q bit M 0.0 he old
| | Ve) (Edge memory bit M 0.0 saves the o
— | b N IMP) state of the RLO from the complete bit
102 logic combination. If there is a signal
i change at the RLO from 1 to O, the
—| f program jumps to label CAS1.

Status Word Bits

BR CC1 CCO ov oS OR STA RLO
Write - - - - - X X X

~J

Figure 8-18 Negative RLO Edge Detection

Ladder Logic (LAD) for S7-300 and S7-400
8-20 C79000-G7076-C504-02

Bit Logic Instructions

8.20 Address Positive Edge Detection

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

8-21

Description The Address Positive Edge Detection instruction compares the signal state of
<address1> with the signal state from the previous signal state check stored
in <address2>. If there is a change from 0 to 1, output Q is 1. Otherwise, it
is 0.

Certain restrictions apply to the placement of the Address Positive Edge
Detection box (see Sectibnl6.1).
Table 8-19 Address Positive Edge Detection Box and Parameters
LAD Element Parameter | Data Type | Memory Area Description
<address13 BOOL I,Q,M, D, L | Signal tobe checked fora
positive edge transition.
<address1> The address M_BIT indicates
POS the edge memory bit that storgs
] Qr the previous signal state of POS.
M_BIT BOOL Q, M, D Use the process-image input ([)
<address2> M BIT memory area for the M_BIT
- only if no input module already
occupies this address.
Q BOOL I, Q, M, D, L | One-shot output
10.3 Output Q 4.0 is 1 if the following
10.0 101 10.2 104 Q4.0 conditions exist:
}—‘ }—‘ }— POS Q — D e The signal state is 1 at inputs 1 0.0
And 10.1 And10.2
N * And there is a positive edge at
M0.0 | M_BIT input 1 0.3
* And the signal state is 1 at
input 1 0.4

Status Word Bits

BR CC1l CcCo ov (O OR STA RLO FC

Write X - - - - X X 1
Figure 8-19 Address Positive Edge Detection

Bit Logic Instructions

8.21 Address Negative Edge Detection

Description The Address Negative Edge Detection instruction compares the signal state
of <address1> with the signal state from the previous signal state check
stored in <address2>. If there is a change from 1 to O, output Q is 1.
Otherwise it is 0.

Certain restrictions apply to the placement of the Address Negative Edge
Detection box (see Section|6.1).

Table 8-20 Address Negative Edge Detection Box and Parameters

LAD Box Parameter | Data Type | Memory Area Description
<address13 BOOL I,Q,M, D, L | Signaltobe checked fora
negative edge transition
<address1> The address M_BIT indicates
NEG the edge memory bit that stores
Qr the previous signal state of NEG.
M_BIT BOOL Q, M, D Use the process-image input (I
<address2>- M BIT memory area for the M_BIT onl
- if no input module already
occupies this address.
Q BOOL I,Q, M, D,L | One-shot output
10.3 Output Q 4.0 is 1 if the following
100 10.1 10.2 104 Q4.0 conditions exist:

|_| |_| I— NEG Q () * The signal state is 1 at inputs | 0.0

And10.1 And10.2

* And there is a negative edge
M 0.0 {M_BIT atinput10.3

* And the signal state is 1 at
input 1 0.4

Status Word Bits

BR CC1 CCo (0)Y] oS OR STA RLO
Write X - - - - X 1 X

s

Figure 8-20 Address Negative Edge Detection

Ladder Logic (LAD) for S7-300 and S7-400
8-22 C79000-G7076-C504-02

Bit Logic Instructions

8.22 Set Reset Flipflop

Description The Set Reset Flipflop instruction executes Set (S) and Reset (R) operations
only when the RLO is 1. An RLO of 0 has no effect on these operations; the
address specified in the operation remains unchanged.

A Set Reset Flipflop is set if the signal state is 1 at the S input and O at the
R input. Otherwise, if the signal state is 0 at the S input and 1 at the R input,
the Flipflop is reset. If the RLO is 1 at both inputs, the Flipflop is reset.

The Set Reset Flipflop instruction is affected by the Master Control Relay
(MCR). For more information on how the MCR functions, see Sectioh 20.5.

Certain restrictions apply to the placement of the Set Reset Flipflop box (see

Sectior 6]1).

Table 8-21 Set Reset Flipflop Box and Parameters

LAD Box Parameter | Data Type | Memory Area Description
<address> <address> | BOOL IO, M, D, L The address indicates the bit that is tq be
SR set or reset.
—S Qr S BOOL I, Q, M, D,L | Enabled set operation
BOOL I, Q, M, D, L | Enabled reset operation
—R
BOOL I, Q, M, D, L | Signal state of <address>
If the signal state is 1 at input | 0.0 and 0
M 0.0 atinput 1 0.1, memory bit M 0.0 is set and

10.0 SR Q4.0 output Q 4.0 is 1.

| | (

L S Q > If the signal state is 0 at input | 0.0 and 1

" 0‘-1 at input | 0.1, memory bit M 0.0 is reset

| R and Q 4.0is 0.
If both signal states are 0, nothing is
changed. If both signal states are 1, the
Reset operation dominates because of
the order, M 0.0 is reset, and Q 4.0 is 0.

Status Word Bits
BR CC1 cCcCo oV os OR STA RLO FC
Write - - - - - X X X 1

Figure 8-21 Set Reset Flipflop

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 8-23

Bit Logic Instructions

8.23 Reset Set Flipflop

Description

Table 8-22

The Reset Set Flipflop instruction executes Set (S) and Reset (R) operations
only when the RLO is 1. An RLO of 0 has no effect on these operations; the
address specified in the operation remains unchanged.

A Reset Set Flipflop is reset if the signal state is 1 at the R input and 0 on the
S input. Otherwise, if the signal state is 0 at the R input and 1 at the S input,
the Flipflop is set. If the RLO is 1 at both inputs, the Flipflop is set.

The Reset Set Flipflop instruction is affected by the Master Control Relay
(MCR). For more information on how the MCR functions, see Seltioh 20.5.

Certain restrictions apply to the placement of the Reset Set Flipflop box (see

Section 6)1).

Reset Set Flipflop Box and Parameters

LAD Box

Parameter | Data Type | Memory Area Description

<address>

RS
—1R

—1S

o

The address indicates the bit that is tg be

<address> | BOOL ,Q,M,D, L
set or reset.

R BOOL I, Q, M, D, L [Enabled reset operation

S BOOL I, Q, M, D,L | Enabled set operation

Q BOOL I, Q, M, D,L | Signal state of <address>

If the signal state is 1 at input 1 0.0 and 0
M 0.0 at input 1 0.1, memory bit M 0.0 is reset,
RS Q4.0 and output Q 4.0 is 0.

Otherwise, if the signal state is 0 at input
s 1 0.0 and 1 at input 1 0.1, memory bit

M 0.0issetand Q 4.0 is 1.

If both signal states are 0, nothing is
changed. If both signal states are 1, the
Set operation dominates because of the
order, M 0.0 is set, and Q 4.0 is 1.

Status Word Bits

Write

BR

CcC1 CCO oV oS OR STA RLO FC
- - - - X X X 1

Figure 8-22

8-24

Reset Set Flipflop

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Timer Instructions

Chapter Overview

Section Description Page
9.1 Location of a Timer in Memory and Components of a Timer
9.2 Choosing the Right Timer
9.3 Pulse S5 Timer
9.4 Extended Pulse S5 Timer
9.5 On-Delay S5 Timer
9.6 Retentive On-Delay S5 Timer
9.7 Off-Delay S5 Timer 9-1

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

9-1

Timer Instructions

9.1 Location of a Timer in Memory and Components of a Timer

Area in Memory

Time Value

Time Base

9-2

Timers have an area reserved for them in the memory of your CPU. This
memory area reserves one 16-bit word for each timer address. The ladder
logic instruction set supports 256 timers. Please refer to your CPU’s technical
information to establish the number of timer words available.

The following functions have access to the timer memory area:

e Timer instructions

¢ Updating of timer words by means of clock timing. This function of your
CPU in the RUN mode decrements a given time value by one unit at the
interval designated by the time base until the time value is equal to zero.

Bits 0 through 9 of the timer word contain the time value in binary code. The
time value specifies a number of units. Time updating decrements the time
value by one unit at an interval designated by the time base. Decrementing
continues until the time value is equal to zero. You can load a time value into
the low word of accumulator 1 in binary, hexadecimal, or binary coded
decimal (BCD) format (see Figure 9-1). The time range is from 0 to 9,990
seconds.

You can pre-load a time value using either of the following formats:

o W#16#wxyz
— Where w = the time base (that is, the time interval or resolution)
— Where xyz = the time value in binary coded decimal format

e S5T#aH_bbM_ccS_ddMS
— Where a = hours, bb = minutes, cc = seconds, and dd = milliseconds
— The time base is selected automatically, and the value is rounded to
the next lower number with that time base.

The maximum time value that you can enter is 9,990 seconds, or
2H_46M_30S.

Bits 12 and 13 of the timer word contain the time base in binary code. The
time base defines the interval at which the time value is decremented by one
unit (see Table 9-1 and Figure 9-1). The smallest time base is 10 ms; the
largest is 10 s.

Table 9-1 Time Base and Its Binary Code

Time Base Binary Code for the Time Base
10 ms 00

100 ms 01
1s 10

10 s 11

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Timer Instructions

Bit Configuration
in the Timer Cell

Reading the Time
and the Time Base

Because time values are stored with only one time interval, values that are
not exact multiples of a time interval are truncated. Values whose resolution
is too high for the required range are rounded down to achieve the desired
range but not the desired resolution. Table 9-2 shows the possible resolutions

and their corresponding ranges.

Table 9-2 Time Base Resolutions and Ranges
Resolution Range
0.01 second 10MS to 9S_990MS
0.1 second 100MS to 1M_39S_900MS
1 second 1S to 16M_39S
10 seconds 10S to 2HR_46M_30S

When a timer is started, the contents of the timer cell are used as the time
value. Bits 0 through 11 of the timer cell hold the time value in binary coded
decimal format (BCD format: each set of four bits contains the binary code
for one decimal value). Bits 12 and 13 hold the time base in binary code (see
Table 9-1). Figure 9-1 shows the contents of the timer cell loaded with timer
value 127 and a time base of 1 second.

15... .8 T .0
X\x\l\O‘O\O\0\1‘0\0\1\0‘0\1\1\1|
%_H_/\ N A /

l \ 1 2 7)

Time base Time value in BCD (0 to 999)

1 second

Irrelevant: These bits are ignored when the timer is started.

Figure 9-1 Contents of the Timer Cell for Timer Value 127, Time Base 1 Second

Each timer box provides two outputs, Bl and BCD, for which you can
indicate a word location. The Bl output provides the time value in binary
format. The BCD output provides the time base and the time value in binary
coded decimal (BCD) format.

Ladder Logic (LAD) for S7-300 and S7-400 9-3

C79000-G7076-C504-02

Timer Instructions

(Pulse timer)

Output signal
(Extended pulse
timer)

Output signal
(On-delay timer)

Output signal
(Retentive
on-delay timer)

Q4.0 S_PEXT

Q4.0 S_ODT

Q4.0 S_ODTS

9.2 Choosing the Right Timer
Figure 9-2 provides an overview of the five types of timers described in this
chapter. This overview is intended to help you choose the right timer for your
timing job.
Input signal 10.0
Output signal Q4.0 s PULSE 4,—|

et
The maximum time that the output signal remains at 1 is the
same as the programmed time value t. The output signal
stays at 1 for a shorter period if the input signal changes to 0.

R I
—

The output signal remains at 1 for the programmed length of
time, regardless of how long the input signal stays at 1.

[

o

The output signal changes to 1 only when the programmed
time has elapsed and the input signal is still 1.

—

—t—
The output signal changes from 0 to 1 only when the

programmed time has elapsed, regardless of how long the
input signal stays at 1.

Output signal Q4.0 S_OFFDT Q _
(Off-delay timer) et —
The output signal changes to 1 when the input signal changes
to 1 or while the timer is running. The time is started when the
input signal changes from 1 to 0.
Figure 9-2 Choosing the Right Timer

Ladder Logic (LAD) for S7-300 and S7-400

9-4 C79000-G7076-C504-02

Timer Instructions

9.3 Pulse S5 Timer

Description The Pulse S5 Timer instruction starts a specified timer if there is a positive
edge (that is, a change in signal state from 0 to 1) at the Start (S) input. A
signal change is always necessary to start a timer. The timer continues to run
with the specified time at the Time Value (TV) input until the programmed
time elapses, as long as the signal state at input TV is 1. While the timer is
running, a signal state check for 1 at output Q produces a result of 1. If there
is a change from 1 to 0 at the S input before the time has elapsed, the timer is
stopped. Then a signal state check for 1 at output Q produces a result of 0.

While the timer is running, a change from 0 to 1 at the Reset (R) input of the
timer resets the timer. This change also resets the time and the time base to
zero. A signal state of 1 at the R input of the timer has no effect if the timer
is not running.

The actual time value can be scanned at outputs Bl and BCD. The time value
at Bl is in binary coded format; at BCD it is in binary coded decimal format.

Table 9-3 Pulse S5 Timer Box and Parameters, with International Short Name
LAD Box Parameter | Data Type [Memory Area Description
Timer identification number. The
T no.
no no- TIMER T range depends on the CPU.
S_PULSE S BOOL I,Q,M, D, L, T, C| Start input
] ?V ISI | TV S5TIME ,Q,M,D, L Preset time value (range 0 to 9999)
BcD - |R BOOL I, Q, M, D, L, T, C| Reset input
—R Q BOOL ,Q,M,D, L Status of the timer
BI WORD ,Q,M,D, L Remaining time value (integer format)
BCD WORD ,Q,M,D, L Remaining time value (BCD format)

Table 9-4 Pulse S5 Timer Box and Parameters, with SIMATIC Short Name

LAD Box Parameter | Data Type | Memory Area Description
Timer identification number. The
T no.
no no- TIMER T range depends on the CPU.
S_IMPULS s BOOL I,Q,M, D, L, T, C| Start input
—S Qr—1{1w S5TIME ,Q,M,D, L Preset time value (range 0 to 9999)
—TW DUAL |
DEz — |R BOOL I,Q, M, D, L, T, C|Resetinput
—R Q BOOL ,Q,M,D, L Status of the timer
DUAL WORD ,Q,M,D, L Remaining time value (integer format)
DEZ WORD ,Q,M,D, L Remaining time value (BCD format)

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 9-5

Timer Instructions

Example Figure 9-3 shows the Pulse S5 Timer instruction, describes the status word
bits, and shows the pulse timer characteristics. Certain restrictions apply to
the placement of timer boxes (see Sedtioh 6.1).

If the signal state of input | 0.0 changes from O to 1
(that is, if there is a positive edge in the RLO), timer
T 5 is started. The timer continues to run with the
specified time of two seconds (2s) as long as input

TS5 1 0.0 is 1. If the signal state of input |1 0.0 changes
10.0 S PULSE Q4.0 from1 to O before the time elapses, the timer is
|7 s Q _<) stopped. If the signal state of input | 0.1 changes

S5T# 25— TV BI fromOtol vyhile the timer is running, the timer is
10.1 reset. The signal state of output Q 4.0 is 1 as long as

IR BCD | the timer is running.

Examples for other preset Time Values:
Available units: h (hours), m (minutes), s (seconds),
ms (milliseconds)

S5T#4s —> 4 seconds

S5T#1h_15m —> 1 hour and 15 minutes
S5T#2h_46m_30s—>2 hours, 46 minutes, and
30 seconds

Status Word Bits

BR CcC1 CCo ov oS OR STA RLO FC
Write - - - - - X X X 1

Timing Diagram

RLO at R input .

Timer running

Signal state check for 1 _-

Signal state check for 0

t = programmed time

Figure 9-3 S5 Pulse Timer

Ladder Logic (LAD) for S7-300 and S7-400
9-6 C79000-G7076-C504-02

Timer Instructions

9.4 Extended Pulse S5 Timer

Description The Extended Pulse S5 Timer instruction starts a specified timer if there is a
positive edge (that is, a change in signal state from 0 to 1) at the Start (S)
input. A signal change is always necessary to start a timer. The timer
continues to run with the specified time at the Time Value (TV) input, even if
the signal state at the S input changes to 0 before the time has elapsed. A
signal state check for 1 at output Q produces a result of 1 as long as the timer
is running. The timer is restarted with the specified time if the signal state at
input S changes from 0 to 1 while the timer is running.

A change from 0 to 1 at the Reset (R) input of the timer while the timer is
running resets the timer. This change also resets the time and the time base to
zero.

The actual time value can be scanned at the outputs Bl and BCD. The time
value at Bl is in binary coded format; at BCD it is in binary coded decimal

format.
Table 9-5 Extended Pulse S5 Timer Box and Parameters, with International Short Name
LAD Box Parameter | Data Type [Memory Area Description
Timer identification number. The
T no. no- TIMER T range depends on the CPU.
S_PEXT S BOOL I, Q, M, D, L, T, C| Start input
S ol— TV S5TIME ,Q,M,D, L Preset time value (range 0 to 9999)
TV Bl — R BOOL I,Q, M, D, L, T, C|Reset input
BCD ™ g BOOL ,Q,M,D,L Status of the timer
—iR
BI WORD ,Q,M,D, L Remaining time value (integer format)
BCD WORD ,Q,M,D, L Remaining time value (BCD format)

Table 9-6 Extended Pulse S5 Timer Box and Parameters, with SIMATIC Short Name

LAD Box Parameter | Data Type | Memory Area Description
o |TMER T fange depends on the CPU.

S_VIMP S BOOL l,Q, M, D, L, T, C| Start input

_Is Ql— TW S5TIME ,Q,M,D, L Preset time value (range 0 to 9999)
-TW DUAL~ |R BOOL l,Q,M, D, L, T, C|Resetinput
DEZI= I BOOL l,Q, M, D, L Status of the timer
—® DUAL WORD ,Q,M,D, L Remaining time value (integer format)
DEZ WORD ,Q,M,D, L Remaining time value (BCD format)

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 9-7

Timer Instructions

Example Figure 9-4 shows the Extended Pulse S5 Timer instruction, describes the
status word bits, and shows the pulse timer characteristics. Certain
restrictions apply to the placement of timer boxes (see Skctlon 6.1).

If the signal state of input | 0.0 changes from 0 to 1
T5 (that is, there is a positive edge in the RLO), timer T 5
is started. The timer continues to run with the
10.0 S_PEXT 0 specified time of two seconds (2s) without regard to a

Q4.
|7 S o< negative edge at input S. If the signal state of

S5T# 2s— TV BI input | 0.0 changes from O to 1 before the time has
10.1 elapsed, the timer is restarted. If the signal state of
F—R BCD — input 1 0.1 changes from 0 to 1 while the timer is

running, the timer is reset. The signal state of output
Q 4.0is 1 as long as the timer is running (see also
Section[9.3).

Status Word Bits

BR CC1 CCoO ov (OS] OR STA RLO
Write - - — - - X X X

=3

Timing Diagram

RLO at S input | | | M
RLO at R input ' : : :

Timer running I_I

signalsaecneckor 1 [[EONNEN [
signal e checkforo - [N [N OO B

t = programmed time

Figure 9-4 Extended Pulse S5 Timer

Ladder Logic (LAD) for S7-300 and S7-400
9-8 C79000-G7076-C504-02

Timer Instructions

9.5

Description

Table 9-7

On-Delay S5 Timer

The On-Delay S5 Timer instruction starts a specified timer if there is a
positive edge (that is, a change in signal state from 0 to 1) at the Start (S)
input. A signal change is always necessary to start a timer. The timer
continues to run with the specified time at the Time Value (TV) input as long
as the signal state at input S is 1. A signal state check for 1 at output Q
produces a result of 1 when the time has elapsed without error and when the
signal state at input S is still 1. When the signal state at input S changes from

1 to 0 while the timer is running, the timer is stopped. In this case, a signal
state check for 1 at output Q always produces the result 0.

A change from 0 to 1 at the Reset (R) input of the timer while the timer is

running resets the timer. This change also resets the time and the time base to

zero. The timer is also reset if the signal state is 1 at the R input while the
timer is not running.

The actual time value can be scanned at the outputs Bl and BCD. The time
value at Bl is in binary coded format; at BCD it is in binary coded decimal

format.

Certain restrictions apply to the placement of timer boxes (see Jection 6.1).

On-Delay S5 Timer Box and Parameters, with International Short Name

LAD Box

Parameter

Data Type

Memory Area

Description

T no.

S_oDT

TV BI

BCD

no.

TIMER

T

Timer identification number. The
range depends on the CPU.

S

BOOL

LQ,MD,LTC

Start input

TV

S5TIME

,Q, M, D, L

Preset time value (range 0 to 9999)

BOOL

LQ,MD,LTC

Reset input

BOOL

,Q, M, D, L

Status of the timer

Bl

WORD

,Q, M, D, L

Remaining time value (integer forma

BCD

WORD

LQMD,L

Remaining time value (BCD format)

Table 9-8

On-Delay S5 Timer Box and Parameters, with SIMATIC Short Name

LAD Box

Parameter

Data Type

Memory Area

Description

T no.

S EVERZ

—1Is Q
TW DUAL
DEZ

—R

no.

TIMER

T

Timer identification number. The
range depends on the CPU.

S

BOOL

LQMDLTC

Start input

TW

S5TIME

LQMD,L

Preset time value (range 0 to 9999)

R

BOOL

LQMDLTC

Reset input

Q

BOOL

LQ,MD,L

Status of the timer

DUAL

WORD

LQ,MD,L

Remaining time value (integer formg

DEZ

WORD

LQ,MD,L

Remaining time value (BCD format)

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-

02

9-9

Timer Instructions

If the signal state of input | 0.0 changes from 0 to
T5 1 (that is, there is a positive edge in the RLO),
timer T 5 is started. If the specified time of two

10.0 S_ODT Q4.0 ;
seconds (2s) elapses and the signal state of
Ii S Q _< > input | 0.0 is still 1, the signal state of output
S5T# 2s— TV Bl — Q 4.0is 1. If the signal state of input 1 0.0
10.1 changes from 1 to 0, the timer is stopped and
R BCD — output Q 4.0 is O (see also Section. If the

signal state of input | 0.1 changes from 0 to 1
while the timer is running, the timer is reset.

Status Word Bits

BR CC1 CCoO ov (O8] OR STA RLO FC
Write - - - - 1

|
=
x
x

Timing Diagram

wousww [[|

RLO at R input ! !

Timer running

Signal state check for 14_

Signal state check for 0

t = programmed time

Figure 9-5 On-Delay S5 Timer

Ladder Logic (LAD) for S7-300 and S7-400
9-10 C79000-G7076-C504-02

Timer Instructions

9.6 Retentive On-Delay S5 Timer

Description The Retentive On-Delay S5 Timer instruction starts a specified timer if there
is a positive edge (that is, a change in signal state from 0 to 1) at the Start (S)
input. A signal change is always necessary to start a timer. The timer
continues to run with the time that is specified at the Time Value (TV) input,
even if the signal state at input S changes to 0 before the timer has expired. A
signal state check for 1 at output Q produces a result of 1 when the time has
elapsed, without regard to the signal state at input S when the reset input (R)
remains at “0”. The timer is restarted with the specified time if the signal
state at input S changes from 0 to 1 while the timer is running.

A change from 0 to 1 at the Reset (R) input of the timer resets the timer
without regard to the RLO at the S input.

Table 9-9 Retentive On-Delay S5 Timer Box and Parameters, with International Short Name
LAD Box Parameter | Data Type | Memory Area Description
. |TMER T fange depends on the CPU.
S ODTS S BOOL I, Q, M, D, L, T, C| Start input
_1Is QF— | TV S5TIME ,Q,M,D, L Preset time value (range 0 to 9999)
4TV Bl— R BOOL I, Q, M, D, L, T, C| Reset input
] BCD 1~ Q BOOL ,Q,M,D, L Status of the timer
Bl WORD ,Q,M,D, L Remaining time value (integer format)
BCD WORD ,Q,M,D, L Remaining time value (BCD format)

Table 9-10 Retentive On-Delay S5 Timer Box and Parameters, with SIMATIC Short Name

LAD Box Parameter | Data Type | Memory Area Description
o |TMER T fange dopende on the CPU.
S SEVERZ S BOOL I, Q, M, D, L, T, C| Start input
—1Is (o) TW S5TIME ,Q,M,D, L Preset time value (range 0 to 9999)
4TW DUAL- IR BOOL I, Q, M, D, L, T, C|Reset input

] DEZ 1= Q BOOL ,Q,M,D, L Status of the timer
DUAL WORD ,Q,M,D, L Remaining time value (integer format)
DEZ WORD ,Q,M,D, L Remaining time value (BCD format)

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 9-11

Timer Instructions

Example Figure 9-6 shows the Retentive On-Delay S5 Timer instruction, describes the
status word bits, and shows the pulse timer characteristics. Certain
restrictions apply to the placement of timer boxes (see Skctlon 6.1).

If the signal state of input | 0.0 changes from 0
to 1 (that is, there is a positive edge in the RLO),

TS5 timer T 5 is started. The timer continues to run
10.0 S_ODTS Q4.0 without regard to a signal change of input 1 0.0
from1 to O. If the signal state of input 1 0.0
S —
Q > changes from 0 to 1 before the time has
S5T#2s— TV Bl —— ; ; :
10.1 elapsed, the timer is restarted. If the signal state
R BCD of input 1 0.1 changes from 0 to 1 while the timer
is running, the timer is reset. The signal state of

output Q 4.0 is 1 if the time has elapsed and
1 0.1 remains on O (see also Section.

Status Word Bits

BR CCl1 CCo ov oS OR STA RLO FC
Write - - - - - X X X 1

Timing Diagram

roarsinpue []

RLO at R input X X

Timer running | |
Signal state check for 1 - .
— L]

Signal state check for 0

Il
]

t = programmed time

Figure 9-6 Retentive On-Delay S5 Timer

Ladder Logic (LAD) for S7-300 and S7-400
9-12 C79000-G7076-C504-02

Timer Instructions

9.7 Off-Delay S5 Timer

Description The Off-Delay S5 Timer instruction starts a specified timer if there is a
negative edge (that is, a change in signal state from 1 to 0) at the Start (S)
input. A signal change is always necessary to start a timer. The result of a
signal state check for 1 at output Q is 1 when the signal state at the S input is
1 or when the timer is running. The timer is reset when the signal state at
input S goes from 0 to 1 while the timer is running. The timer is not restarted
until the signal state at input S changes again from 1 to 0.

A change from 0 to 1 at the Reset (R) input of the timer while the timer is
running resets the timer.

The actual time value can be scanned at the outputs Bl and BCD. The time
value at Bl is in binary coded format; at BCD it is in binary coded decimal
format.

Certain restrictions apply to the placement of timer boxes (see declion 6.1).

Table 9-11 Off-Delay S5 Timer Box and Parameters, with International Short Name

LAD Box Parameter | Data Type [Memory Area Description
no. TIMER T Timer identification number. The
T no. range depends on the CPU.
S_OFFDT S BOOL I, Q, M, D, L, T, C| Start input
- A TV S5TIME ,Q,M,D, L Preset time value (range 0 to 9999)
~ ~
TV Bl- |R BOOL I, Q, M, D, L, T, C| Reset input
BCD = |q BOOL ,Q,M, D, L Status of the timer
R BI WORD ,Q,M,D, L Remaining time value (integer format)
BCD WORD ,Q, M, D, L Remaining time value (BCD format)

Table 9-12 Off-Delay S5 Timer Box and Parameters, with SIMATIC Short Name

LAD Box Parameter | Data Type | Memory Area Description
NEEEEEEE e st ™
S AVERZ S BOOL I, Q, M, D, L, T, C| Start input
< N A T™W S5TIME ,Q,M,D, L Preset time value (range 0 to 9999)
— TrW DUAT_ — |R BOOL I,Q, M, D, L, T, C|Reset input
DEZ = |0 BOOL I,Q, M, D,L Status of the timer
—R DUAL WORD ,Q,M,D, L Remaining time value (integer format)
DEZ WORD ,Q,M,D, L Remaining time value (BCD format)

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 9-13

Timer Instructions

Example Figure 9-7 shows the Off-Delay S5 Timer instruction, describes the status
word bits, and shows the pulse timer characteristics.

T5
If the signal state of input | 0.0 changes from 1 to 0
10.0 S_OFFDT (that is, there is a negative edge in the RLO), the

Q4.0
Ii S Q —<) timer is started. The signal state of output Q 4.0 is 1

S5T# 2s —| TV BI when the signal state of | 0.0 is 1 or the timer is
10.1 running (see also Section[9.3). If the signal state of
|7 R BCD |— input 1 0.1 changes from 0 to 1 while the timer is

running, the timer is reset.

Status Word Bits

BR CC1 CCo ov (OFS) OR STA RLO
Write - - - - - X X X

=3

Timing Diagram

RLO at S input _l—l . l
RLO at R input
Timer running

Signal state check for 1 J I_l

Signal state check for 0 _l l—l

t = programmed time

1 [
I

Figure 9-7 Off-Delay S5 Timer

Ladder Logic (LAD) for S7-300 and S7-400
9-14 C79000-G7076-C504-02

Counter Instructions 1 O

Chapter Overview Section Description Page
10.1 Location of a Counter in Memory and Components of g [10-2
Counter
10.2 Up-Down Counter 10-
10.3 Up Counter 10-
10.4 Down Counter 10-

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 10-1

Counter Instructions

10.1 Location of a Counter in Memory and Components of a Counter

Area in Memory

Count Value

Bit Configuration
in the Counter

10-2

Counters have an area reserved for them in the memory of your CPU. This
memory area reserves one 16-bit word for each counter address. The ladder
logic instruction set supports 256 counters.

The counter instructions are the only functions that have access to the
counter memory area.

Bits O through 9 of the counter word contain the count value in binary code.
The count value is moved to the counter word when a counter is set. The
range of the count value is 0 to 999. You can vary the count value within this
range by using the Up-Down Counter, Up Counter, and Down Counter
instructions.

You provide a counter with a preset value by entering a number from 0 to
999, for example 127, in the following format:

C#127

The C# stands for binary coded decimal format (BCD format: each set of
four bits contains the binary code for one decimal value).

Bits O through 11 of the counter contain the count value in binary coded
decimal format . Figure 10-1 shows the contents of the counter after you have
loaded the count value 127, and the contents of the counter cell after the
counter has been set.

1514 1312 1110 9 8 7 6 5 4 3 2 1 0
Lo |o|o|o|1 010 1110 o|1|1|1|

- A

AL

AL _/

Irrelevant

N

1

2 7 /

Count value in BCD (0 to 999)

1514 1312 1110 9 8 7 6 5 4 3 2 1 O
[| 1010|012 12111111111
N AN /

irrelevant

Binary count value

Figure 10-1
Value 127

Contents of the Counter Cell after the Counter has been set with Count

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Counter Instructions

10.2 Up-Down Counter

Description

A positive edge (i.e. a change in signal state from 0 to 1) at input S of the

Up-Down Counter instruction sets the counter with the value at the Preset
Value (PV) input. A signal state of 1 at input R resets the counter. Resetting
the counter places the value of the count at 0. The counter is incremented by
1 if the signal state at input CU changes from 0 to 1 (that is, there is a
positive edge) and the value of the counter is less than 999. The counter is
decremented by 1 if the signal state at input CD changes from 0 to 1 (that is,
there is a positive edge) and the value of the counter is more than 0. If there
is a positive edge at both count inputs, both operations are executed and the
count remains the same. A signal state check for 1 at output Q produces a
result of 1 when the count is greater than 0; the check produces a result of 0
when the count is equal to 0.

Certain restrictions apply to the placement of the counter boxes (see

Sectio

Table 10-1

neh).

Up-Down Counter Box and Parameters, with International Short Name

LAD Box Parameter

Data Type

Memory Area

Description

no.

COUNTER

Cc

Counter identification number. The ran|
depends on the CPU.

ge

Cu

BOOL

LQ,MD, L

Count up input CU

C no.
S _CUD

CD

BOOL

LQ,MD,L

Count down input CD

cu S

BOOL

LQ,MD,L

Set input for presetting counter

CD PV

-1 PV Cv

WORD

LQ,MD,L

Value in the range of 0 to 999 for
presetting counter (entered as
Ct#t<value> to indicate BCD format)

I
Py

CV_BCD

BOOL

LQ,MD,L

Reset input

BOOL

LQ,MD,L

Status of the counter

Ccv

WORD

LQ,MD,L

Current counter value (integer format)

CV_BCD

WORD

LQ,MD,L

Current counter value (BCD format)

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

10-3

Counter Instructions

Table 10-2 Up-Down Counter Box and Parameters, with SIMATIC Short Name

LAD Box Parameter | Data Type | Memory Area Description
Counter identification number. The range
no- COUNTER | C depends on the CPU.
yAYS BOOL I,Q, M, D, L |CountupinputzV
Z no. -
no ZR BOOL ,Q,M,D,L |Countdown input ZR
ZAEHLER -
_ v ol— S BOOL I, Q, M, D,L [Setinput for presetting counter
—1ZR ~ ZW WORD I, Q, M, D,L [Value in the range of 0 to 999 for
—1S presetting counter (entered as
— ZW DUAL C#<value> to indicate BCD format)
- R BOOL I,Q,M,D,L |Resetinput
—1IR DEZ p
Q BOOL I, Q, M, D,L [Status of the counter
DUAL WORD I, Q, M, D,L [Current counter value (integer format)
DEZ WORD I, Q, M, D,L [Current counter value (BCD format)
Cc10
S_CUD
10.0 - Q4.0 A change in signal state from 0 to 1 at input
|| Ccu Q—() 1 0.2 sets counter C 10 with the value 55 in
binary coded decimal format. If the signal state
10.1 of input | 0.0 changes from 0 to 1, the value of
_‘ }7 CD counter C 10 is increased by 1, except when
10.2 the value of counter C 10 is equal to 999. If
4‘ }— S input 1 0.1 changes from O to 1, counter C 10 is
decreased by 1, except when the value of
C#55 — PV CVH— counter C 10 is equal to 0. If 1 0.3 changes from
0to 1, the value of C 10 is set to O.
10.3 — " .
_‘ }7 R CV_BCD Q 4.0is 1, when C 10 is not equal to “0".

Status Word Bits

BR CcC1 CCO ov (O OR STA RLO
Write - - - - - X X X

=3

Figure 10-2 Up-Down Counter

Ladder Logic (LAD) for S7-300 and S7-400
10-4 C79000-G7076-C504-02

Counter Instructions

10.3 Up Counter

ge

Description A positive edge (i.e. a change in signal state from 0 to 1) at input S of the Up
Counter instruction sets the counter with the value at the Preset Value (PV)
input. With a positive edge, the counter is reset at input R. The resetting of
the counter sets the count value to 0. With a positive edge, the value of the
counter at input CU is increased by 1 when the count value is less than 999.
A signal state check for 1 at output Q produces a result of 1 when the count is
greater than 0; the check produces a result of 0 when the count is equal to 0.
Certain restrictions apply to the placement of the counter boxes (see
Section 6]1).

Table 10-3 Up Counter Box and Parameters, with International Short Name

LAD Box Parameter | Data Type | Memory Area Description
Counter identification number. The ran
c no- COUNTER | C depends on the CPU.
no.
S_CcuU CuU BOOL I,Q,M,D,L |Countupinput CU
—cu o—|S BOOL I, Q, M, D, L |Setinput for presetting counter
Value in the range of 0 to 999 for
—S PV WORD I, Q, M, D, L | presetting counter (entered as
PV CvV~ C#<value> to indicate BCD format)
CV_BCD[— R BOOL I,Q, M, D, L |Resetinput
—R Q BOOL I, Q, M, D, L | Status of the counter
Ccv WORD I, Q, M, D,L | Current counter value (integer format)
CV_BCD |WORD I, Q, M, D, L | Current counter value (BCD format)

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

10-5

Counter Instructions

ge

Table 10-4 Up Counter Box and Parameters, with SIMATIC Short Name
LAD Box Parameter | Data Type | Memory Area Description
Counter identification number. The ran
2 no. COUNTER 1 C depends on the CPU.
no.
Z VORW yAYS BOOL I,Q, M, D,L |CountupinputzV
—lzv Q|S BOOL I, Q, M, D,L [Setinput for presetting counter
Value in the range of 0 to 999 for
—S W WORD l,Q, M, D, L |presetting counter (entered as
7ZW DUAL C#<value> to indicate BCD format)
DEZ—~ |R BOOL I,Q,M,D,L |Resetinput
—IR Q BOOL I, Q, M, D, L | Status of the counter
DUAL WORD I, Q, M, D, L | Current counter value (integer format)
DEZ WORD I, Q, M, D, L | Current counter value (BCD format)
c1o
S_CU
10.0 - Q4.0
e e y
A change in signal state from O to 1 at
input | 0.2 sets counter C 10 with the
value 901 in binary coded decimal
10.2 format. If the signal state of 1 0.0 changes
4‘ }-— S from 0 to 1, the value of counter C 10 is
increased by 1, unless the value of C 10
C#901— PV CVi— is equal to 999. If | 0.3 changes from O
10.3 CV BCDl— to 1, the value of C 10 is setto 0. The
_‘ R - signal state of output Q 4.0is 1if C 10 is
not equal to 0.

Status Word Bits

BR

Write

CCl1

CCo

ov

(O

OR

STA RLO

=3

Figure 10-3

10-6

Up Counter

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Counter Instructions

10.4 Down Counter

ge

Description A positive edge (that is, a change in signal state from 0 to 1) at input S of the
Down Counter instruction sets the counter with the value at the Preset Value
(PV) input. With a positive edge, the counter is reset at input R. The resetting
of the counter sets the count value to 0. With a positive edge, the value of the
counter at the input is reduced by 1 when the count value is greater than 0. A
signal state check for 1 at output Q produces a result of 1 when the count is
greater than 0; the check produces a result of 0 when the count is equal to 0.
Certain restrictions apply to the placement of the counter boxes (see
Sectiof 6.11).
Table 10-5 Down Counter Box and Parameters, with International Short Name
LAD Box Parameter | Data Type | Memory Area Description
Counter identification number. The ran
no- COUNTER | C depends on the CPU.
C no. CcD BOOL I,Q,M, D, L |Countdown input CD
S CD . .
- S BOOL I, Q, M, D, L |Setinput for presetting counter
—cb—— Q—
Value in the range of 0 to 999 for
—'s PV WORD I, Q, M, D, L | presetting counter (entered as
4 pv cvi- Ct#t<value> to indicate BCD format)
Cv_BCDF |[R BOOL I,Q,M,D,L |Resetinput
— R Q BOOL I,Q, M, D, L |Status of the counter
CcVv WORD I, Q, M, D,L | Current counter value (integer format)
CV_BCD |WORD I, Q, M, D, L | Current counter value (BCD format)

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

10-7

Counter Instructions

ge

Table 10-6 Down Counter Box and Parameters, with SIMATIC Short Name
LAD Box Parameter | Data Type | Memory Area Description
Counter identification number. The ran
no- COUNTER | C depends on the CPU.
Z no. ZR BOOL l,Q,M, D, L |Countdown input ZR
Z_RUECK - -
7R - 9 S BOOL I, Q, M, D,L [Setinput for presetting counter
Value in the range of 0 to 999 for
—'s ZW WORD I,Q, M, D, L [presetting counter (entered as
47W DUALF C#<value> to indicate BCD format)
DEZ - R BOOL I,Q,M,D,L |Resetinput
—R Q BOOL I,Q, M, D, L |Status of the counter
DUAL WORD I, Q, M, D, L | Current counter value (integer format)
DEZ WORD I, Q, M, D, L | Current counter value (BCD format)
c1o0
S_CD
10.0 - Q4.0
B o—(D o j
A change in signal state from 0 to 1 at input | 0.2
sets counter C 10 with the value 89 in binary
coded decimal format. If the signal state of input
10.2 | 0.0 changes from 0 to 1, the value of counter
4‘ }-— S C 10 is decreased by 1, unless the value of
counter C 10 is equal to 0. The signal state of
c#89 — PV CViI— output Q 4.0 is 1 if counter C 10 is not equal to 0.
10.3 CV_BCD|— If 1 0.3 changes from 0 to 1, the value of C 10 is
_‘ R setto 0.
Status Word Bits
BR CC1 cCco oV 0s OR STA RLO FC
Write - - - - - X X X 1
Figure 10-4 Down Counter

10-8

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Integer Math Instructions

Chapter Overview

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Section Description Page
11.1 Add Integer
11.2 Add Double Integer
11.3 Subtract Integer
11.4 Subtract Double Integer
11.5 Multiply Integer
11.6 Multiply Double Integer
11.7 Divide Integer 11-8
11.8 Divide Double Integer
11.9 Return Fraction Double Integer [11-1q
11.10 Evaluating the Bits of the Status Word After Integer Math |11-1

Instructions
11-1

Integer Math Instructions

11.1 Add Integer

Description

A signal state of 1 at the Enable (EN) input activates the Add Integer
instruction. This instruction adds inputs IN1 and IN2. The result can be
scanned at OUT. If the result is outside the permissible range for an integer,
the OV and OS bit of the status word are 1 and the ENO is 0.

Certain restrictions apply to the placement of integer math boxes (see

Sectior] 6]1).

Table 11-1 Add Integer Box and Parameters

LAD Box Parameter | Data Type Memory Area Description
EN BOOL ,Q,M,D, L Enable input
ADD_| ENO BOOL ,Q,M,D,L Enable output
—EN ENO— . —
IN1 INT I,Q,M,D, L First value for addition
—IN1
IN2 INT I,Q,M,D, L Second value for addition
JdIN2 OUT [— —
ouT INT ,Q,M,D, L Result of addition
10.0 ADD | Q4.0 A signal state of 1 at input | 0.0 activates
| | =) the ADD_1I box. The result of the addition
EN ENO S —
L _{ NOT}_() MWO0 + MW?2 is put into memory word
MW10. If the result is outside the
MW0—1 IN1 permissible range for an integer or the
MW2— IN2 OUT [— MWI10 signal state of input | 0.0 is 0, output Q 4.0

is set.

Status Word Bits

Function is executed (EN = 1):

BR
Write X

CC1 CCO oV oS OR STA RLO
X X X X X 1 X

o

Figure 11-1 Add Integer

11-2

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Integer Math Instructions

11.2 Add Double Integer

Description

A signal state of 1 at the Enable (EN) input activates the Add Double Integer
instruction. This instruction adds inputs IN1 and IN2. The result can be
scanned at OUT. If the result is outside the permissible range for a double
integer, the OV and the OS bit of the status word are 1 and the ENO is 0.

Certain restrictions apply to the placement of integer math boxes (see

Section 6.]1).

Table 11-2 Add Double Integer Box and Parameters

LAD Box Parameter | Data Type | Memory Area Description
EN BOOL I,Q, M, D, L |Enable input
ADD_DI ENO BOOL I,Q,M,D,L |Enable output
—EN ENO— - —
IN1 DINT I, Q, M, D, L | Firstvalue for addition
—IN1
IN2 DINT I,Q, M, D,L |Second value for addition
- IN2 OUT [— —
ouT DINT I, Q, M, D, L | Result of addition
10.0 ADD_DI Q4.0 Asignal state of 1 at input | 0.0 activates

MDO —
MD4 —

EN ENO H NoTH(S) the ADD_DI box. The result of the addition

IN1
IN2 OUT—

MD10

MDO + MD4 is put into memory double
word MD10. If the result is outside the
permissible range for a double integer or
the signal state of input | 0.0 is 0, output
Q 4.0is set.

Status Word Bits

Function is executed (EN = 1):

BR cC
Write X X

1 CCo
X

oV

X

oS OR STA RLO
X X 1 X

<38

Figure 11-2 Add Double Integer

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

11-3

Integer Math Instructions

11.3 Subtract Integer

Description

A signal state of 1 at the Enable (EN) input activates the Subtract Integer
instruction. This instruction subtracts input IN2 from IN1. The result can be
scanned at OUT. If the result is outside the permissible range for an integer,
the OV and the OS bit of the status word are 1 and the ENO is 0.

Certain restrictions apply to the placement of integer math boxes (see

Sectior] 6.11).

Table 11-3 Subtract Integer Box and Parameters

LAD Box Parameter | Data Type | Memory Area Description
EN BOOL I, Q, M, D,L [Enable input
SUB_| ENO BOOL I,Q, M, D,L |Enable output
—EN ENO[— - -
IN1 INT I, Q, M, D,L |[Firstvalue (from which to subtract)
—IN1
IN2 INT I, Q, M, D,L [Value to subtract from first value
- IN2 OUT |— -
ouT INT I, Q, M, D,L |[Resultof subtraction
||0i0 SUB Q40 A signal state of 1 at input 1 0.0 activates th
= signal state of 1 at input | 0.0 activates the
bl EN ENO _| NOTl_(S) SUB_| box. The result of the subtraction
MWO0 — MW?2 is put into memory word MW10.
MWO— IN1 If the result is outside the permissible range
MW2— IN2 OUT— MW10 for an integer or the signal state of input | 0.0

is 0, output Q 4.0 is set.

Status Word Bits

Function is executed (EN = 1):
BR

Write

X

CC1 CCO ov oS OR STA RLO
X X X X X 1 X

< J

Figure 11-3 Subtract Integer

11-4

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Integer Math Instructions

11.4 Subtract Double Integer

Description A signal state of 1 at the Enable (EN) input activates the Subtract Double
Integer instruction. This instruction subtracts input IN2 from IN1. The result
can be scanned at OUT. If the result is outside the permissible range for a

double integer, the OV and the OS bit of the status word are 1 and the ENO

is 0.

Certain restrictions apply to the placement of integer math boxes (see

Sectio).

Table 11-4 Subtract Double Integer Box and Parameters

LAD Box Parameter | Data Type | Memory Area Description
EN BOOL I,Q,M,D,L |Enable input
SuUB_DI ENO BOOL ,Q,M,D,L |Enable output
EN—ENO - -
IN1 DINT I, Q, M, D, L |Firstvalue (from which to subtract)
—{IN1
IN2 DINT I, Q, M, D, L | Value to subtract from first value
—{IN2 OUT [—)
ouT DINT I, Q, M, D, L | Result of subtraction
10.0 SUB_DI Q4.0

|| A signal state of 1 at input | 0.0 activates the
EN ENO _{ NOTH S> SUB_DI box. The result of the subtraction

MDO — MD4 is put into memory double word
MDO — IN1 MD10. If the result is outside the permissible
MD4 — IN2 OUT — MD10 range for a double integer or the signal state
of input 1 0.0 is O, output Q 4.0 is set.

Status Word Bits

Function is executed (EN = 1):

BR CC1 CCo ov oS OR STA RLO
Write X X X X X X 1 X

ks

Figure 11-4 Subtract Double Integer

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 11-5

Integer Math Instructions

11.5 Multiply Integer

Description A signal state of 1 at the Enable (EN) input activates the Multiply Integer
instruction. This instruction multiplies inputs IN1 and IN2. The result is a
32-bit integer that can be scanned at OUT. If the result is outside the
permissible range for a 16-bit integer, the OV and the OS bit of the status
word are 1 and the ENO is 0.

Certain restrictions apply to the placement of integer math boxes (see

Sectior 6.11).

Table 11-5 Multiply Integer Box and Parameters

LAD Box Parameter | Data Type | Memory Area Description
EN BOOL I,Q, M, D,L |Enable input
MUL_| ENO BOOL ,Q,M,D,L |Enable output
EN ENO N —
IN1 INT I, Q, M, D,L [Firstvalue for multiplication
—IN1
IN2 INT I, Q, M, D,L [Second value for multiplication
- IN2 OUT |— —
ouT DINT I, Q, M, D,L [Resultof multiplication
10.0 MUL_| Q4.0 A signal state of 1 at input | 0.0 activates the
|| EN ENOH NOTI—(s) MUL_I box. The result of the multiplication
MWO0 x MW?2 is put into memory double word
MWO— IN1 MD10. If the resy[t is outside the permissible
| | range for a 16-bit integer or the signal state
Mwz2 IN2 OUT MD10 of input 1 0.0 is 0, output Q 4.0 is set.

Status Word Bits

Function is executed (EN = 1):

BR CC1 CCo (0)Y] oS OR STA RLO
Write X X X X X X 1 X

<

Figure 11-5 Multiply Integer

Ladder Logic (LAD) for S7-300 and S7-400
11-6 C79000-G7076-C504-02

Integer Math Instructions

11.6 Multiply Double Integer

Description A signal state of 1 at the Enable (EN) input activates the Multiply Double

Integer instruction. This instruction multiplies inputs IN1 and IN2. The result

can be scanned at OUT. If the result is outside the permissible range for a

double integer, the OV and the OS bit of the status word are 1 and the ENO is

0.

Certain restrictions apply to the placement of integer math boxes (see

Sectiof 6.11).

Table 11-6 Multiply Double Integer Box and Parameters

LAD Box Parameter | Data Type | Memory Area Description
EN BOOL I,Q,M,D,L |Enable input
MUL_DI ENO BOOL ,Q,M,D,L |Enable output
EN - ENO - —
IN1 DINT I, Q, M, D, L |Firstvalue for multiplication
—IN1
IN2 DINT I, Q, M, D, L |Second value for multiplication
—{IN2 OUT [— .
ouT DINT I, Q, M, D, L |Resultof multiplication
10.0 MUL_DI Q4.0

| | A signal state of 1 at input | 0.0 activates the
EN EN }—(
L O_‘ NOT S> MUL_DI box. The result of the multiplication

MDO x MD4 is put into memory double word
MDO — IN1 MD10. If the result is outside the permissible
MD4 — IN2 OUT— MD10 range for a double integer or the signal state of
input 1 0.0 is O, output Q 4.0 is set.

Status Word Bits

Function is executed (EN = 1):

BR CC1 CCo oV oS OR STA RLO
Write X X X X X X 1 X

ks

Figure 11-6 Multiply Double Integer

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 11-7

Integer Math Instructions

11.7 Divide Integer

Description

A signal state of 1 at the Enable (EN) input activates the Divide Integer
instruction. This instruction divides input IN1 by IN2. The integer quotient
(truncated result) can be scanned at OUT. The remainder cannot be scanned.
If the quotient is outside the permissible range for an integer, the OV and the
OS bit of the status word are 1 and the ENO is 0.

Certain restrictions apply to the placement of integer math boxes (see
Section 6.11).

Table 11-7 Divide Integer Box and Parameters

LAD Box Parameter | Data Type | Memory Area Description
EN BOOL I,Q, M, D,L [Enable input
DIV_I ENO BOOL ,Q,M,D,L |Enable output
—1EN ENO[— —
IN1 INT ,Q, M, D, L [Dividend
—IN1
IN2 INT I,Q, M, D, L [Divisor
JdIN2 OUT [— —
ouT INT I, Q, M, D,L [Resultof division
10.0 DIV_| Q4.0 Asignal state of 1 at input | 0.0 activates the
|| EN ENO[—] NOTF=S) DIV_Ibox. The quotient of dividing MWO by
| MW?2 is put into memory word MW10. If the
MWO IN1 quotient is outside the permissible range for
MW2— IN2 OUT — MWI10 an integer or the signal state of input 1 0.0

is 0, output Q 4.0 is set.

Status Word Bits

Function is executed (EN = 1):
BR

Write

X

CC1 CCO oV os OR STA RLO
X X X X X 1 X

<38

Figure 11-7 Divide Integer

11-8

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Integer Math Instructions

11.8 Divide Double Integer

Description A signal state of 1 at the Enable (EN) input activates the Divide Double
Integer instruction. This instruction divides input IN1 by IN2. The quotient
(truncated result) can be scanned at OUT. The Divide Double Integer
instruction stores the quotient as a single 32-bit value in DINT format. This
instruction does not produce a remainder. If the quotient is outside the
permissible range for a double integer, the OV and the OS bit of the status
word are 1 and the ENO is 0.
Certain restrictions apply to the placement of integer math boxes (see
Sectiof 6.11).
Table 11-8 Divide Double Integer Box and Parameters
LAD Box Parameter | Data Type | Memory Area Description
EN BOOL I, Q, M, D, L |Enable input
DIV_DI ENO BOOL I,Q,M, D, L |Enable output
—EN ENO— —
IN1 DINT I, Q, M, D, L |Dividend
—IN1
IN2 DINT I, Q, M, D, L |Divisor
—4{IN2 OUT [— —
ouT DINT I, Q, M, D, L |Resultof division
A signal state of 1 at input | 0.0 activates
100 DIV_DI Q40 e DIV DI box. The quotient of dividing
1 EN ENO | NOT (s) MDO by MD4 is put into memory double
MDO — IN1 word MD10. If the quotient is outside the
] | permissible range for a double integer or
MD4 IN2_OuT MD10 the signal state of input 1 0.0 is O, output
Q 4.0 s set.
Status Word Bits
Function is executed (EN = 1):
BR CC1 CCO ov (O8] OR STA RLO FC
Write X X X X X X 1 X X
Figure 11-8 Divide Double Integer

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

11-9

Integer Math Instructions

11.9 Return Fraction Double Integer

Description A signal state of 1 at the Enable (EN) input activates the Return Fraction
Double Integer instruction. This instruction divides input IN1 by IN2. The
remainder (fraction) can be scanned at OUT. If the result is outside the
permissible range for a double integer, the OV and the OS bit of the status
word are 1 and the ENO is 0.

Certain restrictions apply to the placement of integer math boxes (see
Section 6.11).
Table 11-9 Return Fraction Double Integer Box and Parameters
LAD Box Parameter | Data Type | Memory Area Description
EN BOOL I,Q, M, D,L [Enable input
MOD ENO BOOL ,Q,M,D,L |Enable output
—EN ENO[— —
IN1 DINT I, Q,M,D,L |Dividend
—IN1
IN2 DINT I, Q, M, D, L |Divisor
—{IN2 OUT |— -
ouT DINT I,Q,M,D,L [Remainder
10.0 MOD Q4.0 A signal state of 1 at input | 0.0 activates
|| EN ENOI NOTH $) the MOD box. The remainder (fraction) of
dividing MDO by MD4 is stored in memory
MDO — IN1 double word MD10. If the result is outside
MD4 — IN2 OUT— MD10 the permissible range for a double integer
or the signal state of input 1 0.0 is 0, output
Q4.0is set.
Status Word Bits
Function is executed (EN = 1):
BR CC1 CCo ov (OK OR STA RLO FC
Write X X X X X X 1 X X
Figure 11-9 Return Fraction Double Integer

11-10

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Integer Math Instructions

11.10 Evaluating the Bits of the Status Word After Integer Math
Instructions

The basic math instructions affect the following bits in the status word:
e CClandCCO

e OV

e OS

A dash (-) in the table means that the bit is not affected by the result of the
instruction.

Table 11-10 Signal State of the Status Word Bits: Result in Valid Range

Valid Range for the Result with Integers Status Word Bits

(16 and 32 bits) ccl|cco|ov | oS
0 (zero) 0 0 0 -
16 bits: -32 768< result < 0 (negative number)

32 bits: -2 147 483 64& result < 0 (negative 0 1 0 -
number)

16 bits: 32 767= result>0 (positive number)

32 bits: 2 147 483 64% result>0 (positive 1 0 0 -
number)

Table 11-11 Signal State of the Status Word Bits: Result not in Valid Range

Invalid Range for the Result with Integers Status Word Bits
(16 and 32 bits) cCi]cco]ov |os

16 bits: result> 32 767 (positive number)
32 bits: result> 2 147 483 647 (positive numbef)

16 bits: result< -32 768 (negative number)
32 bits: result< -2 147 483 648 (negative numbe

1 0 1 1

~

Table 11-12 Signal State of the Status Word Bits: Integer Math Instructions
(32 Bits) +D, /D and MOD

) Status Word Bits
Instruction
CCl1]|cCCO | oV | OS
+D: result = -4 294 967 296 0 0 1 1
/D or MOD: division by 0 1 1 1 1

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 11-11

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Floating-Point Math Instructions 1 2

Chapter Overview Section Description Page
121 Overview 12-3
12.2 Add Floating-Point Numbers 12-3
12.3 Subtract Floating-Point Numbers 12-4
12.4 Multiply Floating-Point Numbers 12-3
125 Divide Floating-Point Numbers 12-§
12.6 Evaluating the Bits of the Status Word After Floating-Pqgint [12-7
Instructions

12.7 Establishing the Absolute Value of a Floating-Point Numper [12-§

12.8 Establishing the Square and/or the Square Root of a 12-9
Floating-Point Number

12.9 Establishing the Natural Logarithm of a Floating-Point 12-1
Number

12.10 Establishing the Exponential Value of a Floating-Point 12-1
Number

12.11 Establishing the Trigonometrical Functions of Angles a 12-1

Floating-Point Numbers

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 12-1

Floating-Point Math Instructions

12.1 Overview

12-2

You can use the floating-point math instructions to perform the following
math instructions using two 32-bit IEEE floating-point numbers:

Add
Subtract
Multiply
Divide

The IEEE 32-bit floating-point numbers belong to the data type called
REAL. For information on the format of floating-point (real) numbers, see
Appendix C.

Using floating-point math, you can carry out the following operations with
one 32-bit IEEE floating-point number:

Establish the square (SQR) and the square root (SQRT) of a floating-point
number

Establish the natural logarithm (LN) of a floating-point number

Establish the exponential value (EXP) of a floating-point number to base
e (=2.71828..)

Establish the following trigonometrical functions of an angle represented
as a 32-bit IEEE floating-point number:

— Establish the sine of a floating-point number (SIN) and establish the
arc sine of a floating-point number (ASIN)

— Establish the cosine of a floating-point number (COS) and establish
the arc cosine of a floating-point number (ACOS)

— Establish the tangent of a floating-point number (TAN) and establish
the arc tangent of a floating-point number (ATAN)

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Floating-Point Math Instructions

12.2 Add Floating-Point Numbers

Description A signal state of 1 at the Enable (EN) input activates the Add Floating-Point
Numbers instruction. This instruction adds inputs IN1 and IN2. The result
can be scanned at OUT. If the result is outside the permissible range for a
floating-point number (overflow or underflow), the OV and the OS bit of the
status word are 1 and ENO is 0. You will find information on evaluating the
displays in the status word in Section 12.6.
Certain restrictions apply to the placement of floating-point math boxes (see
Sectior 6]1).
Table 12-1 Add Real Box and Parameters
LAD Box Parameter | Data Type | Memory Area Description
EN BOOL I, Q, M, D, L |Enable input
ADD_R ENO BOOL ,Q,M,D,L |Enable output
—EN ENO— . —
IN1 REAL I, Q, M, D, L |Firstvalue for addition
—IN1
IN2 REAL I, Q, M, D, L |Second value for addition
—IN2 OUT |— —
ouT REAL I, Q, M, D, L |Result of addition
‘| 0‘-0 ADD_R Q4.0 A signal state of 1 at input | 0.0 activates
| EN ENO | NOTH S) the ADD_R box. The result of the addition
MDO + MD4 is put into memory double
MDO —{ IN1 word MD10. If the result is outside the
| | permissible range for a real number or the
MD4 N2 OUT MD10 signal state of input 1 0.0 is 0, output Q 4.0

is set.

Status Word Bits

Function is executed (EN = 1):

BR CC1 CcCo ov (O OR STA RLO FC
Write X X X X X X 1 X X
Figure 12-1 Add Real

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

12-3

Floating-Point Math Instructions

12.3 Subtract Floating-Point Numbers

Description A signal state of 1 at the Enable (EN) input activates the Subtract
Floating-Point Numbers instruction. This instruction subtracts input IN2 from
IN1. The result can be scanned at OUT. If the result is outside the permissible
range for a floating-point number (overflow or underflow), the OV and the
OS bit of the status word is 1 and ENO is 0. You will find information on
evaluating the displays in the status word in Se€tion 12.6.
Certain restrictions apply to the placement of floating-point math boxes (see
Sectior 6.11).
Table 12-2 Subtract Real Box and Parameters
LAD Box Parameter | Data Type | Memory Area Description
EN BOOL I, Q, M, D,L [Enable input
SUB_R ENO BOOL ,Q,M,D,L |Enable output
—EN ENO— - -
IN1 REAL I, Q, M, D,L |[Firstvalue (from which to subtract)
—IN1
IN2 REAL I,Q, M, D,L [Value to subtract from first value
—{IN2 OUT [— -
ouT REAL I, Q, M, D,L |Resultof subtraction
10.0 SUB_R Q4.0 A signal state of 1 at input | 0.0 activates the
|| EN ENO(NOTF—(S) SUB_Rbox. The result of the subtraction
MDO — MD4 is put into memory double word
MDO — IN1 MD10. If the result is outside the permissible
| | range for a real number or the signal state of
MD4 IN2_ouTt MD10 input 1 0.0 is 0, output Q 4.0 is set.

Status Word Bits

Function is executed (EN = 1):
BR

Write

X

CC1 CCO oV (O OR STA RLO
X X X X X 1 X

o

Figure 12-2

12-4

Subtract Real

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Floating-Point Math Instructions

12.4 Multiply Floating-Point Numbers

Description A signal state of 1 at the Enable (EN) input activates the Multiply
Floating-Point Numbers instruction. This instruction multiplies inputs IN1
and IN2. The result can be scanned at OUT. If the result is outside the
permissible range for a floating-point number (overflow or underflow), the
OV and the OS bit of the status word are 1 and ENO is 0. You will find
information on evaluating the displays in the status word in Sdctioh 12.6.
Certain restrictions apply to the placement of floating-point math boxes (see
Section 61).

Table 12-3 Multiply Real Box and Parameters

LAD Box Parameter | Data Type | Memory Area Description
EN BOOL I, Q, M, D, L |Enable input
MUL_R ENO BOOL ,Q,M,D,L |Enable output
—EN ENO— . ——
IN1 REAL I, Q, M, D, L |Firstvalue for multiplication
—IN1
IN2 REAL 1,Q,M,D,L |Second value for multiplication
—IN2 OUT |— AT
ouT REAL I,Q, M, D, L |Resultof multiplication
10.0 [MUL_R | Q4.0
1 1 EN ENO _‘ NOT (S) A signal state of 1 atinput 1 0.0 act_ivates_ the
MUL_R box. The result of the multiplication
MDO —! IN1 MDO x MD4 is put into memory double word
MD10. If the result is outside the permissible
MD4 — IN2 OUT — MD10 range for a real number or the signal state of

input 1 0.0 is 0, output Q 4.0 is set.

Status Word Bits

Function is executed (EN = 1):

BR CC1 CCoO ov oS OR STA RLO FC
Read * - - * - * _ * *
Write X X X X X X 1 X X
Figure 12-3 Multiply Real

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02 12-5

Floating-Point Math Instructions

12.5 Divide Floating-Point Numbers

Description A signal state of 1 at the Enable (EN) input activates the Divide
Floating-Point Numbers instruction. This instruction divides input IN1 by
IN2. The result can be scanned at O. If the result is outside the permissible
range for a floating-point number (overflow or underflow), the OV and the
OS bit of the status word are 1 and ENO is 0. You will find information on
evaluating the displays in the status word in Se€tion 12.6.
Certain restrictions apply to the placement of floating-point math boxes (see
Sectior 6]1).
Table 12-4 Divide Real Box and Parameters
LAD Box Parameter | Data Type | Memory Area Description
DIV R EN BOOL I,Q, M, D,L [Enable input
—EN ENOf— |ENO BOOL l,Q,M, D, L |Enable output
JINL IN1 REAL I, Q, M, D, L [Dividend
IiNn2 ol [IN2 REAL l,Q,M,D, L |Divisor
(0] REAL I, Q, M, D,L [Resultof division
‘l O"O DIV_R Q4.0 Asignal state of 1 atinput | 0.0 activates the
|| EN ENO[— NOTF(S) DIV R box. The result of dividing MDO by
| MD4 is put into memory double word MD10.
MDO IN1 . . L
If the result is outside the permissible range
MD4 —IN2 O— MD10 for a real number or the signal state of input

10.0is 0, output Q 4.0 is set.

Status Word Bits

Function is executed (EN = 1):

BR CC1
X X

CCo
X

ov

Write X

0s
X

OR STA RLO

oS

Figure 12-4 Divide Real

12-6

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Floating-Point Math Instructions

12.6 Evaluating the Bits of the Status Word After Floating-Point

Instructions
Description The math instructions affect the following bits in the status word:
e CClandCCO
e OV
e OS

A hyphen (-) entered in a bit column of the table means that the bit in
question is not affected by the result of the integer math instruction.

Table 12-5 Signal State of Status Word Bits for Floating-Point Math Result
that is in Valid Range

Bits of Status Word

Valid Ra for a Floang-Poimt Resutt (3251t's)
noe g ¢ & CCc1l|cCcoOo| ov | OS

+0, -0 (zero) 0 0 0 -

-3.402823E+38< Result< -1.175494E-38 0 1 0 -
(negative number)

+1.175494E-38< Result< 3.402823E+38 1 0 0 -

(positive number)

Table 12-6 Signal State of Status Word Bits for Floating-Point Math Result
that is not in Valid Range

Range Not Valid for a Floating-Point Result Bits of Status Word

(32 Bits) cciicco| ov | os

-1.175494E-38< Result< -1.401298E-45 0 0 1 1
(negative number) Underflow

+1.401298E-45< Result< +1.175494E-38 0 0 1 1
(positive number) Underflow

Result< -3.402823E+38 0 1 1 1
(negative number) Overflow
Result> -3.402823E+38 1 0 1 1
(positive number) Overflow

Result < -3.402823E+38 1 1 1 1

or Result > +3.402823E+38
no floating-point number

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 12-7

Floating-Point Math Instructions

12.7 Establishing the Absolute Value of a Floating-Point Number

Description With the Establishing the Absolute Value of a Floating-Point Number
instructionyou can establish the absolute value of a floating-point number.

Table 12-7 Box ABS and Parameters

LAD Box Parameter | Data Type Memory Area Description

EN BOOL ,Q,M,D, L Enable input
ABS ENO BOOL ,Q,M,D, L Enable output
—EN ENO[—

IN REAL ,Q,M,D, L Input value: real

IN__ OUT
ouT REAL ,Q,M,D, L Output value: absolute value of the

real number

If 1 0.0 = 1, the absolute value of MD8 is
‘ 10.0 ABS Q4.0 output at MD12.

| |
EN ENO || NoT}—
! —) MD8 = +6.234 x 10-3 results in

MD8 —IN OUTH— MD12 MD12 = 6.234 x 10-3,

Output Q 4.0 is “1” if the conversion is not
executed (ENO = EN = 0).

Status Word Bits

Function is executed (EN = 1):

BR CC1 CCoO oV (O OR STA RLO /FC
Write X - - - - 0 X X 1

Figure 12-5Establishing the Absolute Value of a Floating-Point Number

Ladder Logic (LAD) for S7-300 and S7-400
12-8 C79000-G7076-C504-02

Floating-Point Math Instructions

12.8 Establishing the Square and/or the Square Root of a Floating-Point

Number

Description

Parameters

With the Establishing the Square of a Floating-Point Number instrygtion
can square a floating-point number.

With the instruction Establishing the Square Root of a Floating-Point
Numberyou can extract the square root of a floating-point number. This
instruction produces a positive result when the address is greater than “0".

Sole exception: the square root of -0 is -0.

You can find information on the effects that the instructions SQR and SQRT
have on the status bits CC 1, CC 0, OV and OS in Sectidn 12.6.

Table 12-8 shows the box SQR and describes the parameters. Table 12-9
shows the box SQRT and describes the parameters.

Table 12-8 Box SQR and Parameters
LAD Box Parameter | Data Memory Description
Type Area
EN BOOL | I, Q, M, D, L |Enable input
SQR ENO BOOL |1, Q, M, D, L | Enable output
—|EN ENO IN REAL |1,Q,M, D, L |Number
—INout ouT REAL |1, Q, M, D, L |Square of the
number
Table 12-9 Box SQRT and Parameters
LAD Box Parameter | Data Memory Description
Type Area
EN BOOL | I, Q, M, D, L |Enable input
SQRT ENO BOOL |1, Q, M, D, L | Enable output
—EN ENO
IN REAL |I,Q, M, D, L [Number
—IN OouT
ouT REAL |1, Q, M, D, L |Square root of the
number

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

12-9

Floating-Point Math Instructions

10.0 SORT Q4.0 The box SQRT is activated when 1 0.0 = 1.
[: The result of SQRT (MDO) is stored in the
P EN ENO _| NOTI—(S> memory double word MD10. If MDO < O or if
the result is outside of the permissible area
for floating-point numbers or if the signal
state of 10.0 =0, output Q 4.0 is set.

MDO — IN OUT — MD10

Status Word Bits

Function is executed (EN = 1):

BR CC1 CCoO oV oS OR STA RLO FC
Write X X X X X 0 X X 1

Figure 12-6 Establishing the Square Root of a Floating-Point Number

Ladder Logic (LAD) for S7-300 and S7-400
12-10 C79000-G7076-C504-02

Floating-Point Math Instructions

12.9 Establishing the Natural Logarithm of a Floating-Point Number

Description With the Establishing the Natural Logarithm of a Floating-Point Number
instruction you can determine the natural logarithm of a floating-point
number.

You can find information on the effects that the instruction LN has on the
status bits CC 1, CC 0, OV and OS in Sedtion 12.6.

Table 12-10 Box LN and Parameters

LAD Box Parameter | Data Memory Description
Type Area
N EN BOOL | I, Q, M, D, L [Enable input
—1EN ENOI— ENO BOOL |1, Q, M, D, L | Enable output
1IN OUT[— IN REAL |I,Q, M, D, L [Number
ouT REAL |1, Q, M, D, L [Natural logarithm
of the number

10.0 LN Q4.0 The box LN is activated when 1 0.0 = 1. The
|| 4 : result of LN (MDOQ) is stored in the memory
b EN ENO _‘ NOT s) double word MD10. If MDO < 0 or if the result
is outside of the permissible area for

MDO —IN OUT — MD10 floating-point numbers or if the signal state of
1 0.0 =0, output Q 4.0 is set.

Status Word Bits

Function is executed (EN = 1):

BR CC1 CCO ov oS OR STA RLO
Write X X X X X 0 X X

=38

Figure 12-7 Establishing the Natural Logarithm of a Floating-Point Number

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 12-11

Floating-Point Math Instructions

12.10 Establishing the Exponential Value of a Floating-Point Number

Description

With the Establishing the Exponential Value of a Floating-Point Number
instruction you can establish the exponential value of a floating-point number
to base e (= 2.71828...).

You can find information on the effects that the instruction EXP has on the
status bits CC 1, CC 0, OV and OS in Sedtion]12.6.

Table 12-11 Box EXP and Parameters

LAD Box Parameter | Data Memory Description
Type Area
EN BOOL |I,Q, M, D, L [Enable input
EXP
—EN ENOI— ENO BOOL | I, Q, M, D, L | Enable output
_ 1IN OuUT L_ IN REAL (I, Q, M, D,L [Number
ouT REAL |1, Q, M, D, L | Exponent of the
number

Q4.0 The box EXP is activated when 1 0.0 = 1. The
result of EXP (MDO) is stored in the memory
double word MD10. If MDO < 0 or if the result
is outside of the permissible area for
floating-point numbers or if the signal state of

EXP

EN ENO{— NOTF—(S)

IN OUT [— MD10

10.0 =0, output Q 4.0 is set.

Status Word Bits

Function is executed (EN = 1):

Write

Figure 12-8

12-12

CC1 CCO oV oS OR STA RLO
X X X X 0 X X

=3

Establishing the Exponential Value of a Floating-Point Number

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Floating-Point Math Instructions

12.11 Establishing the Trigonometrical Functions of Angles as
Floating-Point Numbers

Description

Parameters

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

With the following instructions, you can establish the trigonometrical
functions of angles represented as 32-bit IEEE floating-point numbers.

Instruction Explanation

SIN Establish the sine of an angle given in the radian measure.

ASIN Establish the arc sine of a floating-point number. The result is an pngle
that is given in the radian measure. The value lies within the follopving
range:
nt/ 2 < arc sine< +xt/ 2, wheret = 3.14.

COs Establish the cosine of a floating-point number from an angle givgn in
the radian measure.

ACOS Establish the arc cosine of a floating-point number. The result is n

angle that is given in the radian measure. The value lies within the
following range:
0 < arc cosines +mt, wheren = 3.14...

TAN Establish the tangent of a floating-point number from an angle given in
the radian measure.
ATAN Establish the arc tangent of a floating-point number. The result i an

angle that is given in the radian measure. The value lies within the
following range:
/2 < arc tangents + /2, wheret = 3.14...

You can find information on the effects that the instructions SIN, ASIN,
COS, ACOS, TAN and ATAN have on the status bits CC 1, CC 0, OV and
OS in Sectioh 12]6.

Tables 12-12 to 12-17 show the boxes SIN, ASIN, COS, ACOS, TAN and
ATAN and describe the parameters.

Table 12-12 Box SIN and Parameters

LAD Box Parameter | Data Memory Description
Type Area
SN EN BOOL | I, Q, M, D, L |Enable input
—EN ENO & — ENO BOOL |1, Q, M, D, L | Enable output
_ 1IN ouUT L_ IN REAL |1, Q, M, D, L | Number
ouT REAL |1, Q, M, D, L |Sine of the
number

12-13

Floating-Point Math Instructions

Table 12-13 Box ASIN and Parameters

LAD Box Parameter | Data Memory Description
Type Area
EN BOOL |1, Q, M, D, L | Enable input
ASIN

—1EN ENOI— ENO BOOL | I, Q, M, D, L [Enable output

_IIN ouT L IN REAL |1, Q, M, D, L | Number
ouT REAL |1, Q, M, D, L | Arc sine of the

number

Table 12-14 Box COS and Parameters

LAD Box Parameter | Data Memory Description
Type Area
EN BOOL |1, Q, M, D, L |Enable input
COoSs

— EN ENOI— ENO BOOL |1, Q, M, D, L | Enable output

|IN OuT l IN REAL |1, Q, M, D, L | Number
ouT REAL (I, Q, M, D, L [Cosine of the

number

Table 12-15 Box ACOS and Parameters

LAD Box Parameter | Data Memory Description
Type Area
EN BOOL |1, Q, M, D, L | Enable input
ACOS
—EN ENOI— ENO BOOL |1, Q, M, D, L [Enable output
_ 1IN OUT |_ IN REAL |1, Q, M, D, L | Number
ouT REAL |1, Q, M, D, L | Arc cosine of the
number

Ladder Logic (LAD) for S7-300 and S7-400
12-14 C79000-G7076-C504-02

Floating-Point Math Instructions

Table 12-16 Box TAN and Parameters
LAD Box Parameter | Data Memory Description
Type Area
EN BOOL | I, Q, M, D, L |Enable input
TAN
—EN ENOI— ENO BOOL | I, Q, M, D, L [Enable output
_IIN ouT IN REAL |1, Q, M, D, L | Number
ouT REAL |1, Q, M, D, L | Tangent of the
number
Table 12-17 Box ATAN and Parameters
LAD Box Parameter | Data Memory Description
Type Area
EN BOOL | I, Q, M, D, L |Enable input
ATAN
—EN ENO I — ENO BOOL |1, Q, M, D, L | Enable output
_|IN ouT IN REAL |I,Q, M, D, L [Number
ouT REAL |1, Q, M, D, L |Arc tangent of thg
number
0.0 SIN Q4.0 TEe box |Sll\i is ac(tivate)d when Id0.0 :hl.
| | The result of SIN (MDO) is stored in the
b EN ENO|—| NOT (S memory double word MD10. If the result
is outside of the permissible area for
MDO —}IN OUT — MD10 floating-point numbers or if the signal

state of 10.0 =0, output Q 4.0 is set.

Status Word Bits

Function is executed (EN = 1):

BR
Write X

Figure 12-9

CC1 CCoO
X X

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

ov
X X

(ON)

Establishing the Sine of a Floating-Point Number

12-15

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Comparison Instructions

Chapter Overview

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

13

Section Description Page
13.1 Compare Integer [13-2
13.2 Compare Double Integer [13-3
13.3 Compare Floating-Point Numbers [13-5

13-1

Compatrison Instructions

13.1 Compare Integer

Description

Table 13-2

Compare Integer Box and Parameters

The Compare Integer instruction carries out a compare operation on the basis
of 16-bit floating-point numbers. You can use this instruction like a normal
contact. This instruction compares inputs IN1 and IN2 according to the type
of comparison you select from the browser. Table 13-1 lists the valid
comparisons.

If the comparison is true, the result of logic operation (RLO) of the
comparison is 1. Otherwise, it is 0. There is no negation of the compare
output because this logic can also be handled by the inverse compare
function.

Table 13-1 Types of Comparisons for Integers

Type of Comparison Symbols in Name at Top of Box

IN1 is equal to IN2. ==

IN1 is not equal to IN2. <>

IN1 is greater than IN2. >
IN1 is less than IN2. <

IN1 is greater than or equal to IN2. >=

IN1 is less than or equal to IN2. <=

LAD Box Parameter

Data Type

Memory Area

Description

IN1

INT

LQM,D,L

First value to compare

IN2 INT

,LQ,M, D, L Secortrverdetd tompare~

10,0 101 CMP 10.2 Q4.0
R R SR
MWO— IN1

MW2 —{ IN2

Output Q 4.0 is set if the following
conditions exist:
* There is a signal state of 1 at
inputs 1 0.0 and 1 0.1
And MWO = MW2
And there is a signal state of 1 at
input10.2

Status Word Bits

Comparison is true:

BR CC1 CCo ()] oS
Write - X X 0 -

OR STA RLO

=3

Figure 13-1 Compare Integer

13-2

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Comparison Instructions

13.2 Compare Double Integer

Description

The Compare Double Integer instruction carries out a compare operation on
the basis of 32-bit floating-point numbers. You can use this instruction like a
normal contact. This instruction compares inputs IN1 and IN2 according to
the type of comparison you select from the browser. Table 13-3 lists the valid

comparisons.

If the comparison is true, the result of logic operation (RLO) of the function
is 1. Otherwise it is 0. There is no negation of the compare output, because
this logic can also be handled by the inverse compare function.

Table 13-3 Types of Comparisons for Double Integers

Type of Comparison Symbols in Name at Top of Box
IN1 is equal to IN2. ==
IN1 is not equal to IN2. <>
IN1 is greater than IN2. >
IN1 is less than IN2. <
IN1 is greater than or equal to IN2. >=
IN1 is less than or equal to IN2. <=
Table 13-4 Compare Double Integer Box and Parameters (Example: not equal)
LAD Box Parameter | Data Type | Memory Area Description
CMP IN1 DINT I, Q, M, D, L |Firstvalue to compare
— <>D -
—IN1
N2 IN2 DINT I,Q,M,D,L | Secorrvvardetd compare~

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

13-3

Comparison Instructions

10,0 10.1
Lo CmpP
[[==
‘ MDO— IN1

MD4— IN2

10.2 Q4.0

—(s)

Output Q 4.0 is set if the following
conditions exist:
® There is a signal state of 1 at
inputs 1 0.0 and at 1 0.1
And MDO = MD4
And there is a signal state of 1 at
input10.2

Status Word Bits

Comparison is true:

BR CC1 CCO ov (O OR STA RLO FC
Write - X X 0 - X 1 X 1
Figure 13-2 Compare Double Integer

13-4

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Comparison Instructions

13.3 Compare Floating-Point Numbers

Description The Compare Floating-Point Numbers instruction triggers a comparison
operation. You can use this instruction like a normal contact. This instruction
compares inputs IN1 and IN2 according to the type of comparison you select
from the browser. Table 13-5 lists the valid comparisons.

If the comparison is true, the result of logic operation (RLO) of the function
is 1. Otherwise it is 0. There is no negation of the compare output, because
this logic can also be handled by the inverse compare function.

Table 13-5 Types of Comparisons for Floating-Point Numbers

Type of Comparison Symbols in Name at Top of Box
IN1 is equal to IN2. ==
IN1 is not equal to IN2. <>
IN1 is greater than IN2. >
IN1 is less than IN2. <
IN1 is greater than or equal to IN2. >=
IN1 is less than or equal to IN2. <=

Table 13-6 Compare Floating-Point Numbers: Box and Parameters (Example: less than)

LAD Box Parameter | Data Type | Memory Area Description
| CMP | IN1 REAL I, Q, M, D, L |Firstvalue to compare
<R
—IN1
N2 IN2 REAL 1,Q,M,D,L | Secomnrvanrietd tcompare~

Output Q 4.0 is set if the following
conditions exist:

10,0 10.1 10.2 Q4.0

CMP ® Thereis a signal state of 1 at
}— - —‘ HS> inputs 1 0.0 and 1 0.1
MDO— IN1 e And MDO = MD4
* And there is a signal state of 1 at
MD4 IN2 input 1 0.2

Status Word Bits

Comparison is true:

BR CC1 CCoO ov oS OR STA RLO
Write - X X X X X 1 X

=3

Figure 13-3 Compare Floating-Point Numbers

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 13-5

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Move and Conversion Instructions 14

Chapter Overview Section Description Page
14.1 Assign a Value [14-2
14.2 BCD to Integer [14-4
14.3 Integer to BCD [14-5
14.4 Integer to Double Integer [14-4
145 BCD to Double Integer [14-7
14.6 Double Integer to BCD [14-9
14.7 Double Integer to Floating-Point Number [14-9
14.8 Ones Complement Integer [14-1q
14.9 Ones Complement Double Integer [14-11
14.10 Twos Complement Integer [14-12
14.11 Twos Complement Double Integer 14-1
14.12 Negate Floating-Point Number 14-1
14.13 Round to Double Integer 14-1
14.14 Truncate Double Integer Part 14-1
14.15 Ceiling 14-1
14.16 Floor 14-18

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 14-1

Move and Conversion Instructions

14.1 Assign a Value

Description

The Assign a Value instruction enables you to pre-assign a variable with a
specific value.

The value specified at the IN input is copied to the address specified at the
OUT output. ENO has the same signal state as EN.

With the MOVE box, the Assign a Value instruction can copy all data types
that are 8, 16, or 32 bhits in length. User-defined data types such as arrays or
structures have to be copied with the Direct Word Move integrated system
function (see th®rogramming Manual234).

The Assign a Value instruction is affected by the Master Control Relay
(MCR). For more information on how the MCR functions, see Seltior} 20.5.

Certain restrictions apply to the placement of the Assign a Value box (see

Sectiof 6]1).

Table 14-1 Assign a Value Box and Parameters

LAD Box Parameter Data Type Memory Area Description
EN BOOL I, Q, M, D, L [Enable input
NOVE ENO BOOL I, Q, M, D, L [Enable output
—1EN ENOHKF All data types that
IN are 8,16,and 32 |1, Q, M, D,L | Source value
bits in length
-{IN OUT - All data types that
ouT are 8,16,and 32 |1, Q, M, D, L | Destination address
bits in length
The instruction is executed if the signal
10.0 MOVE Q4.0 state of input 1 0.0 is 1. The content of
—EN ENO—() memory word MW10 is copied to data
word 12 of the open DB.
MW10— IN OUT— DBWI12 Output Q 4.0 is 1 if the operation is

executed.

Status Word Bits

Function is executed (EN = 1):

BR
Write 1

cc1 cco oV oS OR STA RLO FC
- - - - - 1 1 X

Figure 14-1 Assign a Value

14-2

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Move and Conversion Instructions

Pre-Assigning a For information on integrated system functions that act as move instructions
Specific Value to a which can pre-assign a specific value to a variable or which can copy
Variable variables of varying types, see tAmgramming Manual234/.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 14-3

Move and Conversion Instructions

14.2 BCD to Integer

Description

The BCD to Integer conversion instruction reads the contents specified in the
input parameter IN as a three-digit number in binary coded decimal format
(BCD, + 999) and converts this number to an integer value. The output
parameter OUT provides the result.

ENO and EN always have the same signal state.

If a place of a BCD number is in the invalid range of 10 to 15, a BCDF error
occurs during an attempted conversion.

* The CPU goes into the STOP mode. “BCD Conversion Error” is entered
in the diagnostic buffer with event ID number 2521.

e |f OB121 is programmed, it is called. For more information on
programming OB121, see tReogramming Manual234/.

Certain restrictions apply to the placement of the BCD to Integer conversion

box (see Sectidn 6.1).

Table 14-2

BCD to Integer Conversion Box and Parameters

LAD Box Parameter | Data Type

Memory Area

Description

EN BOOL

LQ,MD,L

Enable input

BCD_|
—1en Enol— |ENO BOOL

LQ,MD,L

Enable output

—iNn - outl— [N WORD

LQ,MD,L

Number in BCD format

ouT INT

LQ,MD,L

Integer value of BCD number

BCD_|

If the signal state of input 1 0.0 is 1, the

Q4.0 conversion is executed. The contents of

memory word MW10 is read as a

EN ENOH NoOTH()

MW10 — IN OUT

— Mwi12

three-digit number in BCD format and
converted to an integer. The result is
stored in memory word MW12. If the
conversion is not executed, the signal
state of output Q 4.0 is 1 (ENO = EN).

Status Word Bits

Function is executed (EN = 1):

BR CCl1

CcCco ov

Write 1 - - -

oS OR STA RLO FC
- 0 1 1 X

Figure 14-2 BCD to Integer

14-4

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Move and Conversion Instructions

14.3

Description

Table 14-3

Integer to BCD

The Integer to BCD conversion instruction reads the contents specified in the
input parameter IN as an integer value and converts this value to a three-digit
number in binary coded decimal format (BCP,999). The output

parameter OUT provides the result. If an overflow occurs, ENO is 0.

Certain restrictions apply to the placement of the Integer to BCD conversion
box (see Sectidn 6.1).

Integer to BCD Conversion Box and Parameters

LAD Box

Parameter

Data Type

Memory Area Description

—EN
—1IN

|_BCD
ENO —
ouT |

EN

BOOL

I,Q, M, D, L |Enable input

ENO

BOOL

I, Q, M, D,L |Enable output

INT

I, Q, M, D, L |Integer number

ouT

WORD

I, Q, M, D,L |ResultinBCD format

If the signal state of input 1 0.0 is 1, the
conversion is executed. The contents of

|_BCD Q4.0

MW10 — IN

EN ENOH NOTF()

OouT — Mwi2

memory word MW10 is read as an
integer and converted to a three-digit
number in BCD format. The result is
stored in memory word MW12. If an
overflow occurred, the signal state of
output Q 4.0 is 1. If the signal state at
input EN is 0O (that is, if the conversion is
not executed), the signal state of output

Q4.0isalso 1.
Status Word Bits
Function is executed (EN = 1):
BR CC1 CCO oV 0oSs OR STA RLO FC
Write 1 - - X X 0 1 X X
Figure 14-3 Integer to BCD

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

14-5

Move and Conversion Instructions

14.4 Integer to Double Integer
Description The Integer to Double Integer conversion instruction reads the contents
specified in the input parameter IN as an integer and converts the integer to a
double integer. The output parameter OUT provides the result. ENO and EN
always have the same signal state.
Certain restrictions apply to the placement of the Integer to Double Integer
conversion box (see Sect|on|6.1).
Table 14-4 Integer to Double Integer Conversion Box and Parameters
LAD Box Parameter | Data Type | Memory Area Description
DI EN BOOL I, Q, M, D,L [Enable input
—EN _ENO - ENO BOOL I, Q, M, D,L [Enable output
—IN OuUT |— IN INT l,Q,M, D, L | Value to convert
ouT DINT I,Q,M,D,L |Result
10.0 | DI Q4.0 If the signal state of input 1 0.0 is 1, the
| - ' conversion is executed. The contents of
. EN ENO _| NOTH), memory word MW10 is read as an integer
and converted to a double integer. The result
MW10— IN OUT[— MD12 is stored in memory double word MD12. If
the conversion is not executed, the signal

state of output Q 4.0 is 1 (ENO = EN).

Status Word Bits

BR
Write 1

Function is executed (EN = 1):

CC1

CCO

ov

Figure 14-4

14-6

Integer To Double Integer

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Move and Conversion Instructions

14.5 BCD to Double Integer

Description

Table 14-5

The BCD to Double Integer conversion instruction reads the contents
specified in the input parameter IN as a seven-digit number in binary coded
decimal format (BCD#+ 9,999,999) and converts this number to a double
integer value. The output parameter OUT provides the result.

ENO and EN always have the same signal state.

If a place of a BCD number is in the invalid range of 10 to 15, a BCDF error
occurs during an attempted conversion.

* The CPU goes into the STOP mode. “BCD Conversion Error” is entered
in the diagnostic buffer with event ID number 2521.

e If OB121 is programmed, it is called. For more information on
programming OB121, see tReogramming Manual234/.

Certain restrictions apply to the placement of the BCD to Double Integer
conversion box (see Sectlon6.1).

BCD to Double Integer Conversion Box and Parameters

LAD Box

Parameter | Data Type | Memory Area Description

—EN ENO

—{IN

BCD_DI

EN BOOL I, Q, M, D, L |Enable input

ENO BOOL I, Q, M, D, L |Enable output

IN DWORD I, Q, M, D, L |Numberin BCD format

ouT DINT I, Q, M, D, L |Double integer value of BCD number

If the signal state of input 1 0.0 is 1, the
BCD_DI Q4.0 conversion is executed. The contents of

MD8— IN OUT— MD12

EN ENO—{ NOT }—() memory double word MD8 is read as a
seven-digit number in BCD format and
converted to a double integer. The result is
stored in memory double word MD12. If the
conversion is not executed, the signal state
of output Q 4.0 is 1 (ENO = EN).

Status Word Bits

Function is executed (EN = 1):

Write

CC1 CCO ov oS OR STA RLO FC
- - - - 0 1 1 X

Figure 14-5

BCD to Double Integer

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

14-7

Move and Conversion Instructions

14.6 Double Integer to BCD

Description

Table 14-6

The Double Integer to BCD conversion instruction reads the contents
specified in the input parameter IN as a double integer value and converts
this value to a seven-digit number in BCD format 9,999,999). The output
parameter OUT provides the result. If an overflow occurs, ENO is 0.

Certain restrictions apply to the placement of the Double Integer to BCD
conversion box (see Section]6.1).

Double Integer to BCD Conversion Box and Parameters

LAD Box

Parameter

Data Type

Memory Area

Description

DI_BCD
EN

IN OUT |—

EN

BOOL

LQ,MD,L

Enable input

ENO [—

ENO

BOOL

LQ,MD,L

Enable output

DINT

LQ,MD,L

Double integer number

ouT

DWORD

LQ,MD,L

Result in BCD format

If the signal state of input 1 0.0 is 1, the

10.0

MD8 —

DI_BCD Q4.0

EN ENOf—| NOTH()

IN OUT— MD12

conversion is executed. The contents of
memory double word MD8 is read as a
double integer and converted to a
seven-digit number in BCD format. The

result is stored in memory double word
MD12. If an overflow occurred, the signal
state of output Q 4.0 is 1. If the signal state
at input EN is O (that is, if the conversion is
not executed), the signal state of output

Q4.0isalso 1.
Status Word Bits
Function is executed (EN = 1):
BR CC1 ccCco oV 0os OR STA RLO FC
Write X - - X X X 1 X X
Figure 14-6 Double Integer to BCD

14-8

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Move and Conversion Instructions

14.7 Double Integer to Floating-Point Number

Description

The Double Integer to Floating-Point Number conversion instruction reads
the contents specified in the input parameter IN as a double integer value and
converts this value to a real number. The output parameter OUT provides the
result. ENO and EN always have the same signal state.

Certain restrictions apply to the placement of the Double Integer to Real

conversion box (see Sectlon|6.1).

Table 14-7

Double Integer to Floating-Point Number Conversion Box and Parameters

LAD Box Parameter

Data Type

Memory Area

Description

EN
DI_R

BOOL

LQ,MD,L

Enable input

ENO

—EN ENO[—

BOOL

LQ,MD,L

Enable output

JIN ouT | IN

DINT

LQ,MD,L

Value to convert

ouT

REAL

LQ,MD,L

Result

DI_R Q4.0
ENO— NoT——()

OUT — MD12

| | EN
MD8 — IN

If the signal state of input 1 0.0 is 1, the
conversion is executed. The contents of
memory double word MD8 is read as an
integer and converted to a real number.
The result is stored in memory double
word MD12. If the conversion is not
executed, the signal state of output Q 4.0
is 1 (ENO=EN).

Status Word Bits

Function is executed (EN = 1):

BR CC1 CCO ov oS
Write 1 - - - -

Figure 14-7 Double Integer to Floating-Point Number

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

14-9

Move and Conversion Instructions

14.8 Ones Complement Integer

Description The Ones Complement Integer instruction reads the contents specified in the
input parameter IN and performs the Boolean word logic instruction
Exclusive Or Word (see Sectibn 15.6) masked by FFE6 that every bit is
changed to its opposite value. The output parameter OUT provides the result.
ENO and EN always have the same signal state.
Certain restrictions apply to the placement of the Ones Complement Integer
conversion box (see Sectlon]6.1).

Table 14-8 Ones Complement Integer Box and Parameters

LAD Box Parameter | Data Type | Memory Area Description
NV T EN BOOL I,Q, M, D,L |Enable input
—EN ENO - ENO BOOL I, Q, M, D,L [Enable output
4IN OUT |— IN INT I,Q,M,D,L |Inputvalue
ouT INT I, Q, M, D,L [Onescomplementinteger

If the signal state of input 1 0.0 is 1, the

10.0

MW8 —

INV_I Q4.0 conversion is executed. Every bit in MW8

EN ENO—| NOTI—(D is reversed.

H MWS = 00000000 00000000 —
IN OUT — MWI10 MW10 = 11111111 11111111

If the conversion is not executed, the signal
state of output Q 4.0 is 1 (ENO = EN).

Status Word Bits

Function is executed (EN = 1):

BR

Write X

CC1 cCcCo ov (0N OR STA RLO
- - - - X 1 X

<

Figure 14-8

14-10

Ones Complement Integer

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Move and Conversion Instructions

14.9 Ones Complement Double Integer

Description The Ones Complement Double Integer instruction reads the contents
specified in the input parameter IN and performs the Boolean word logic
operation Exclusive Or Word (see Sec5.6) masked by FFFRFE&F
that every bit is changed to the opposite value. The output parameter OUT
provides the result. ENO and EN always have the same signal state.

Certain restrictions apply to the placement of the Ones Complement Double
Integer conversion box (see Secfiod 6.1).

Table 14-9 Ones Complement Double Integer Box and Parameters

LAD Box Parameter | Data Type | Memory Area Description
EN BOOL I,Q,M,D,L |Enable input
INV_DI
—4EN ENOHF ENO BOOL I, Q, M, D, L |Enable output
4IN OUT|— IN DINT I,Q,M,D,L |Inputvalue
ouT DINT I, Q, M, D,L |Ones complement double integer

10.0 If the signal state of input 1 0.0 is 1, the
| I INV_DI Q4.0 conversion is executed. Each bit of memory
T EN ENO _| NOT|_<) double word MD8 is changed:

MD8 — IN OUT[— MD10 MD8 =FFFF FFFF -~ MD12 = 0000 0000

If the conversion is not executed, the signal
state of output Q 4.0 is 1 (ENO = EN).

Status Word Bits

Function is executed (EN = 1):

BR CC1 CCco ov oS OR STA RLO
Write X - - - - X 1 X

ks

Figure 14-9 Ones Complement Double Integer

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 14-11

Move and Conversion Instructions

14.10 Twos Complement Integer

Description The Twos Complement Integer instruction reads the contents specified in the
input parameter IN and changes the sign (for example, from a positive value
to a negative value). The output parameter OUT provides the result. If the
signal state of EN is 0, then the signal state of ENO is 0. If the signal state of
EN is 1 and an overflow occurs, the signal state of ENO is 0.

Certain restrictions apply to the placement of the Twos Complement Integer
conversion box (see Section]6.1).

Table 14-10 Twos Complement Integer Box and Parameters

LAD Box Parameter | Data Type | Memory Area Description
NEG_| EN BOOL I,Q, M, D,L |Enable input
—4EN ENOH ENO BOOL I, Q, M, D,L [Enable output
_IIN OuUT | — IN INT I, Q, M, D,L [Inputvalue
ouT INT I,Q, M, D,L [Twos complement integer
10.0 NEG | Q 4.0 Ifthe signal state of input 1 0.0 is 1, the conversion
} } EN ENO _‘ NOT H) is executed. The value of memory word MW8 is
provided at OUT in memory word MW10 with the
MWS — IN OUT — MW10 opposite sign, as shown in the following example:

MwW8 = +10 -~ MW10=-10

If the signal state of EN is 1 and an overflow
occurs, the signal state of ENO is 0 and the signal
state of output Q 4.0 is 1. If the conversion is not
executed, the signal state of output Q 4.0is 1
(ENO = EN).

Status Word Bits

BR

Write X

Function is executed (EN = 1):

CCi1 (ON] OR STA RLO

X

CCo
X

ov
X

x g

Figure 14-10 Twos Complement Integer

14-12

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Move and Conversion Instructions

14.11 Twos Complement Double Integer

Description

Table 14-11

The Twos Complement Double Integer instruction reads the contents
specified in the input parameter IN and changes the sign (for example, from a
positive value to a negative value). The output parameter OUT provides the
result. If the signal state of EN is 0, then the signal state of ENO is 0. If the
signal state of EN is 1 and an overflow occurs, the signal state of ENO is 0.

Certain restrictions apply to the placement of the Twos Complement Double
Integerconversion box (see Sect{on]6.1).

Twos Complement Double Integer Box and Parameters

LAD Box

Parameter

Data Type

Memory Area

Description

NEG_DI
EN ENO[—
IN OUT|—

EN

BOOL

LQ,MD,L

Enable input

ENO

BOOL

LQ,MD,L

Enable output

DINT

LQ,MD,L

Input value

ouT

DINT

LQ,MD,L

Twos complement double integer

NEG_DI
EN ENO

IN OUT

_{

Q4.0

NOTH()

MD12

If the signal state of input 1 0.0 is 1, the conversion
is executed. The value of memory double word
MD8 is provided at OUT in memory double word
MD10 with the opposite sign, as shown in the
following example:

MD8 = +60.000 - MD10 = - 60.000.

If the signal state of EN is 1 and an overflow
occurs, the signal state of ENO is 0 and the signal
state of output Q 4.0 is 1. If the conversion is not
executed, the signal state of output Q 4.0is 1

(ENO = EN).
Status Word Bits
Function is executed (EN = 1):
BR CC1 CCco ov oS OR STA RLO FC
Write X X X X X X 1 X X

Figure 14-11 Twos Complement Double Integer

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

14-13

Move and Conversion Instructions

14.12 Negate Floating-Point Number

The Negate Floating-Point Number instruction reads the contents specified in

the input parameter IN and inverts the sign bit, that is, the instruction

changes the sign of the number (for example from 0 for plus to 1 for minus).

The bits of the exponent and mantissa remain the same. The output
parameter OUT provides the result. ENO and EN always have the same
signal state.

Certain restrictions apply to the placement of the Negate Floating-Point
Number conversion box (see Secfior} 6.1).

Table 14-12 Negate Floating-Point Number Box and Parameters

LAD Box Parameter | Data Type | Memory Area Description
EN BOOL I, Q, M, D,L |Enable input
NEG_R Q P
—EN ENOHF ENO BOOL I,Q,M,D,L |Enable output
4IN OUT |— IN REAL I,Q, M, D,L [Inputvalue
ouT REAL I, Q, M, D,L [The resultis the negated form of the
input value.
If the signal state of input | 0.0 is 1, the conversion
‘I O"O NEG_R Q4.0 is executed. The value of memory double word
1] EN ENO{ NOTH() wmpsis provided at OUT in memory double word
MD8 — IN OUTH— MD12 MD12 with the opposite sign, as shown in the
following example:

MD8 = +6.234 x 10 -3 _ MD12 = —6.234 x 10 —3

If the conversion is not executed, the signal state
of output Q 4.0 is 1 (ENO = EN).

Status Word Bits

Function is executed (EN = 1):

BR CCl1 CCo oV oS OR STA RLO FC
Write X — - - - 0 X X 1

Figure 14-12 Negate Floating-Point Number

Ladder Logic (LAD) for S7-300 and S7-400
14-14 C79000-G7076-C504-02

Move and Conversion Instructions

14.13 Round to Double Integer

The Round to Double Integer conversion instruction reads the contents
specified in the input parameter IN as a real number and converts this
number to a double integer, by rounding it to the nearest whole number. The
result is the nearest integer component (that is, the nearest whole number).
The output parameter OUT provides the result. If an overflow occurs, ENO
is 0.

Description

Certain restrictions apply to the placement of the Round to Double Integer
conversion box (see Sect[on]6.1).

Table 14-13 Round to Double Integer Box and Parameters

LAD Box

Parameter

Data Type

Memory Area

Description

EN BOOL
ROUND

I, Q, M, D, L |Enable input

—1eN ENOl— |ENO BOOL

I, Q, M, D,L |Enable output

—{IN OuT [— |IN REAL

I, Q, M, D, L |Value toround

ouT DINT I, Q, M, D, L |INrounded to nearest whole number

If the signal state of input 1 0.0 is 1, the
conversion is executed. The contents of
memory double word MD8 is read as a real
number and converted to a double integer.
The result of this round-to-nearest function is
stored in memory double word MD12. If an
overflow occurred, the signal state of output
Q 4.0 is 1. If the signal state at input EN is O
(that is, if the conversion is not executed), the
signal state of output Q 4.0 is also 1.

ROUND Q4.0

N EN ENO— NOTH()

OUT - MD12

Status Word Bits

Function is executed (EN = 1):

BR CC1 CCO ov oS OR STA RLO
Write X - — X X X 1 X

<38

Figure 14-13 Round to Double Integer

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02 14-15

Move and Conversion Instructions

14.14 Truncate Double Integer Part

The Truncate Double Integer Part conversion instruction reads the contents
specified in the input parameter IN as a real number and converts this
number to a double integer, by rounding it to the nearest lower or equal
whole number. The result is the integer component of the specified real
number (that is, the whole number part of the real number). The output
parameter OUT provides the result. If an overflow occurs, ENO is 0.

Description

Certain restrictions apply to the placement of the Truncate Double Integer
Part conversion box (see Secfior] 6.1).

Table 14-14 Truncate Double Integer Part Box and Parameters

LAD Box

Parameter

Data Type

Memory Area Description

TRUNC
EN

IN ouT—

EN

BOOL

I, Q, M, D,L [Enable input

ENO—

ENO

BOOL

I, Q, M, D,L [Enable output

REAL

I,Q,M,D,L [Value toround

ouT

DINT

I, Q, M, D,L | Whole number part of IN value

If the signal state of input | 0.0 is 1, the
conversion is executed. The contents of
memory double word MD8 is read as a real
number and converted to a double integer.
The integer component is the result and is
stored in memory double word MD12. If an
overflow occurred, the signal state of output
Q 4.0is 1. If the signal state at input EN is O
(that is, if the conversion is not executed),
the signal state of output Q 4.0 is also 1.

TRUNC Q4.0

EN ENO NOTH()

OUT - MD12

Status Word Bits

Function is executed (EN = 1):

BR CCl1 CCo oV oS OR STA RLO
Write X - - X X X 1 X

oS

Figure 14-14 Truncate Double Integer Part

Ladder Logic (LAD) for S7-300 and S7-400

14-16 C79000-G7076-C504-02

Move and Conversion Instructions

14.15 Ceiling

Description

The Ceiling conversion instruction reads the contents specified in the input
parameter IN as a real number and converts this number to a double integer.
The result is the lowest integer component which is greater than or equal to
the specified real number. The output parameter OUT provides the result. If
an overflow occurs, ENO is 0.

Certain restrictions apply to the placement of the Ceiling conversion box (see

Sectior 6]1).

Table 14-15 Ceiling Conversion Box and Parameters

LAD Box Parameter | Data Type | Memory Area Description
EN BOOL I, Q, M, D,L |Enable input
CEIL Q P
—EN ENO— |ENO BOOL I, Q, M, D, L |Enable output
JIN OUT|— |IN REAL I, Q, M, D, L |[Value to convert
ouT DINT ,Q,M,D,L |Result
CEIL If the signal state of input 1 0.0 is 1, the
II Oio Q4.0 conversion is executed. The contents of
o EN ENO | NOTI—(). memory double word MD8 is read as a real
vDs — IN ouT - MD12 number and converted to a double integer by

rounding to the next higher (or equal) whole

number. The result is stored in memory
double word MD12. If an overflow occurred,
the signal state of output Q 4.0 is 1. If the
signal state at input EN is O (that is, if the
conversion is not executed), the signal state
of output Q 4.0 is also 1.

Status Word Bits

Function is executed (EN = 1):

BR
Write X

CC1 CCO oV (0N OR STA RLO
- - X X X 1 X

<38

Figure 14-15 Ceiling

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

14-17

Move and Conversion Instructions

14.16 Floor

Description

The Floor conversion instruction reads the contents specified in the input
parameter IN as a real number and converts this number to a double integer.
The result is the highest integer component which is lower than or equal to
the specified real number. The output parameter OUT provides the result. If

an overflow occurs, ENO is 0.

Certain restrictions apply to the placement of the Floor conversion box (see

Sectior 6]1).
Table 14-16 Floor Conversion Box and Parameters
LAD Box Parameter | Data Type | Memory Area Description
FLOOR EN BOOL I,Q, M, D,L |Enable input
—EN ENO— | ENO BOOL I, Q, M, D,L [Enable output
4IN OuUTl_ |IN REAL I,Q, M, D, L | Value to convert
ouT DINT I,Q,M,D,L |Result

10.0 FLOOR Q4.0 If the signal state of input 1 0.0 is 1, the

| | conversion is executed. The contents of
b EN ENO _| NOTI_() memory double word MD8 is read as a real

MD8 — IN OUT — MD12 number and converted to a double integer by

rounding to the next lower (or equal) whole
number. The result is stored in memory
double word MD12. If an overflow occurred,
the signal state of output Q 4.0 is 1. If the
signal state at input EN is O (that is, if the
conversion is not executed), the signal state
of output Q 4.0 is also 1.

Status Word Bits

BR
Write X

Function is executed (EN = 1):

CCl1 CcCo (0)Y]

- X

OR STA RLO

os

Figure 14-16 Floor

14-18

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Word Logic Instructions

Chapter Overview

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Section Description Page
15.1 Overview [15-2
15.2 WAnNd Word 15-
15.3 WANd Double Word [15-4
15.4 WOr Word [15-9
15.5 WOTr Double Word [15-4
15.6 WXOr Word [15-7
15.7 WXOr Double Word 15-

15-1

Word Logic Instructions

15.1 Overview

What Are Word logic instructions compare pairs of words (16 bits) and double words
Word Logic (32 bits) bit by bit, according to Boolean logic. The following instructions
Instructions? are available for performing word logic operations:

¢ (Word) And Word: Combines two words bit by bit, according to the And
truth table.

e (Word) And Double Word: Combines two double words bit by bit,
according to the And truth table.

e (Word) Or Word: Combines two words bit by bit, according to the Or
truth table.

¢ (Word) Or Double Word: Combines two double words bit by bit,
according to the Or truth table.

¢ (Word) Exclusive Or Word: Combines two words bit by bit, according to
the Exclusive Or truth table.

¢ (Word) Exclusive Or Double Word: Combines two double words bit by
bit, according to the Exclusive Or truth table.

Ladder Logic (LAD) for S7-300 and S7-400
15-2 C79000-G7076-C504-02

Word Logic Instructions

15.2 WAnNd Word

Description

signal state as EN.

The relationship of the result at output OUT to 0 affects condition code bit

CC 1 of the status word as follows:

e If the result at output OUT is not equal to 0, condition code bit CC 1 of

the status word is set to 1.

¢ If the result at output OUT is equal to O, condition code bit CC 1 of the

status word is 0.

A 1 at the Enable (EN) input activates the (Word) And Word instruction. This
instruction combines the two digital values indicated in inputs IN1 and IN2

bit by bit, according to the And truth table. The values are interpreted as pure
bit patterns. The result can be scanned at the output OUT. ENO has the same

Certain restrictions apply to the placement of word logic boxes (see

Section 6]1).

Table 15-1

(Word) And Word Box and Parameters

LAD Box

Parameter

Data Type

Memory Area

Description

EN

BOOL

LQ,MD,L

Enable input

WAND_W
EN ENO

ENO

BOOL

LQ,MD,L

Enable output

IN1
<INL

WORD

LQ,MD,L

First value for logic operation

IN2
—H{IN2 OuUT

-

WORD

LQ,MD,L

Second value for logic operation

ouT

WORD

,Q,MD,L

Result of logic operation

MWO —
2#0000000000001111 —

WAND_W
EN ENO

IN1
IN2 OUT

—C D

Q4.0

A signal state of 1 at input | 0.0
activates the instruction. Only bits 0 to
3 are important; the rest of memory

word MWO is masked:

Mw2

IN1
IN2
ouT

0101010101010101
0000000000001111
0000000000000101

The signal state of output Q 4.0 is 1 if
the operation is executed.

Status Word Bits

Function is executed (EN = 1):

BR CC1
Write 1 X

CCo ov
0 0

(ON)

OR
- X

STA RLO FC
1 1 1

Figure 15-1 (Word) And Word

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

15-3

Word Logic Instructions

15.3 WAnNd Double Word

Description A 1 at the Enable (EN) input activates the (Word) And Double Word
instruction. This instruction combines the two digital values indicated in

inputs IN1 and IN2 bit by bit, according to the And truth table. The values

are interpreted as pure bit patterns. The result can be scanned at the output

OUT. ENO has the same signal state as EN.

The relationship of the result at output OUT to 0 affects condition code bit
CC 1 of the status word as follows:

¢ |f the result at output OUT is not equal to 0, condition code bit CC 1 of
the status word is set to 1.

¢ If the result at output OUT is equal to O, condition code bit CC 1 of the
status word is O.

Certain restrictions apply to the placement of word logic boxes (see

Sectior] 6]1).

Table 15-2 (Word) And Double Word Box and Parameters

LAD Box Parameter | Data Type | Memory Area

Description

EN BOOL LQ,MD,L

Enable input

WAND_DW

ENO
—EN ENO [~

BOOL LQ M, D, L

Enable output

IN1 DWORD ,Q,M,D, L

—HNE—

First value for logic operation

IN2 DWORD ,Q,M,D, L

—{IN2 OUT L

Second value for logic operation

ouT DWORD ,Q,M,D, L

Result of logic operation

A signal state of 1 at input | 0.0 activates the instruction.
Only bits 4 to 11 are important; the rest of memory double
word MD4 is masked:

10.0 WAND_DW

——{EN

IN1
N2

Q4.0

ENO—(C)

MDO —
DW#16#FF0 —

IN1
IN2
ouT

0101010101010101 0101010101010101
0000000000000000 0000111111111111
0000000000000000 0000010101010000

OUT — MD4

The signal state of output Q 4.0 is 1 if the operation is
executed.

Status Word Bits

Function is executed (EN = 1):

BR CCl1 cCcCo ov (O OR STA RLO

FC
Write 1 X 0 0 - X 1 1 1

Figure 15-2 (Word) And Double Word

Ladder Logic (LAD) for S7-300 and S7-400

15-4 C79000-G7076-C504-02

Word Logic Instructions

15.4 WOr Word

Description A 1 at the Enable (EN) input activates the (Word) Or Word instruction. This
instruction combines the two digital values indicated in inputs IN1 and IN2
bit by bit, according to the Or truth table. The values are interpreted as pure
bit patterns. The result can be scanned at the output OUT. ENO has the same
signal state as EN.

The relationship of the result at output OUT to 0 affects condition code bit
CC 1 of the status word as follows:

e If the result at output OUT is not equal to 0, condition code bit CC 1 of
the status word is set to 1.

¢ If the result at output OUT is equal to O, condition code bit CC 1 of the
status word is O.

Certain restrictions apply to the placement of word logic boxes (see

Section 6]1).

Table 15-3 (Word) Or Word Box and Parameters

LAD Box Parameter | Data Type | Memory Area Description
EN BOOL I,Q,M,D,L |Enable input
WOR_W ENO BOOL I, Q, M, D, L |Enable output
—EN ENO[—
IN1 WORD I, Q, M, D, L |Firstvalue for logic operation
—INL—
IN2 WORD I, Q, M, D, L |Second value for logic operation
-JIN2 OUT|—
ouT WORD I,Q, M, D, L |Resultof logic operation

A signal state of 1 atinput 0.0

10.0 WOR W Q4.0 activates the instruction. Bits O to 3 are
1 1 EN ENO —() set to 1; the rest of memory word MWO
remains unchanged:
MWO—IN1 _
2#0000000000001111 —IN2 OUT— MW2 :s; ; 8383838383832;21
OUT = 0101010101011111

The signal state of output Q 4.0 is 1 if
the operation is executed.

Status Word Bits

Function is executed (EN = 1):

BR CcC1 CCO oV oS OR STA RLO FC
Write 1 X 0 0 - X 1 1 1

Figure 15-3 (Word) Or Word

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 15-5

Word Logic Instructions

15.5 WOr Double Word

Description

Table 15-4

A 1 at the Enable (EN) input activates the (Word) Or Double Word

instruction. This instruction combines the two digital values indicated in

inputs IN1 and IN2 bit by bit, according to the Or truth table. The values are
interpreted as pure bit patterns. The result can be scanned at the output OUT.
ENO has the same signal state as EN.

The relationship of the result at output OUT to 0 affects condition code bit
CC 1 of the status word as follows:

¢ |f the result at output OUT is not equal to 0, condition code bit CC 1 of
the status word is set to 1.

¢ If the result at output OUT is equal to O, condition code bit CC 1 of the
status word is O.

Certain restrictions apply to the placement of word logic boxes (see

Section 6]1).

(Word) Or Double Word Box and Parameters

Parameter

LAD Box

Data Type

Memory Area

Description

EN

BOOL

LQ,MD,L

Enable input

WOR_DW

ENO
EN ENO

BOOL

LQ,MD,L

Enable output

IN1
—HNE—

DWORD

LQ,MD,L

First value for logic operation

IN2
IN2 OUT

DWORD

LQ,MD,L

Second value for logic operation

ouT

DWORD

LQ,MD,L

Result of logic operation

WOR_DW
EN ENO

MDO —
DW#16#FFF —

IN1

ouT
N2

Q4.0

—()

— MD4

A signal state of 1 at input | 0.0 activates the instruction.
Bits 0 to 11 are set to 1; the rest of memory double word
MD4 remains unchanged:

IN1
IN2
ouT

0101010101010101 0101010101010101
0000000000000000 0000111111111111
0101010101010101 0101111111111111

The signal state of output Q 4.0 is 1 if the operation is
executed.

Status Word Bits

Function is executed (EN = 1):

BR CC1 cCco oV 0s OR STA RLO FC
Read * - - - - * _ * *
Write 1 X 0 0 - X 1 1 1
Figure 15-4 (Word) Or Double Word

15-6

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Word Logic Instructions

15.6 WXOr Word

Description A 1 at the Enable (EN) input activates the (Word) Exclusive Or Word
instruction. This instruction combines the two digital values indicated in
inputs IN1 and IN2 bit by bit, according to the XOr truth table. The values
are interpreted as pure bit patterns. The result can be scanned at the output
OUT. ENO has the same signal state as EN.

The relationship of the result at output OUT to 0 affects condition code bit
CC 1 of the status word as follows:

e If the result at output OUT is not equal to 0, condition code bit CC 1 of
the status word is set to 1.

¢ If the result at output OUT is equal to O, condition code bit CC 1 of the
status word is O.

Certain restrictions apply to the placement of word logic boxes (see

Section 6]1).

Table 15-5 (Word) Exclusive Or Word Box and Parameters

LAD Box Parameter | Data Type | Memory Area Description
EN BOOL I,Q,M,D,L |Enable input
WXOR_W
EN ENO — ENO BOOL I, Q, M, D, L |Enable output
IN1 WORD I, Q, M, D, L |Firstvalue for logic operation
—HNE—
IN2 WORD I, Q, M, D, L |Second value for logic operation
—-JIN2 OUT|—
o WORD I,Q, M, D, L |Resultof logic operation
10.0 WXOR W Q4.0 A signal state of 1 at input |1 0.0
1 1 EN ENO :) activates the instruction.
IN1 = 0101010101010101
MWO0—IN1 IN2 = 0000000000001111
2#0000000000001111 —{IN2 OUT — MW?2 OUT = 0101010101011010

The signal state of output Q 4.0 is 1
if the operation is executed.

Status Word Bits

Function is executed (EN = 1):

BR CC1 CcCo ov oS OR STA RLO FC
Write 1 X 0 0 - X 1 1 1

Figure 15-5 (Word) XOr Word

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 15-7

Word Logic Instructions

15.7 WXOr Double Word

Description

Table 15-6

A 1 at the Enable (EN) input activates the (Word) Exclusive Or Double Word
instruction. This instruction combines the two digital values indicated in
inputs IN1 and IN2 bit by bit, according to the XOr truth table. The values
are interpreted as pure bit patterns. The result can be scanned at the output
OUT. ENO has the same signal state as EN.

The relationship of the result at output OUT to 0 affects condition code bit
CC 1 of the status word as follows:

¢ |f the result at output OUT is not equal to 0, condition code bit CC 1 of
the status word is set to 1.

¢ If the result at output OUT is equal to O, condition code bit CC 1 of the
status word is O.

Certain restrictions apply to the placement of word logic boxes (see

Section 6]1).

(Word) Exclusive Or Double Word Box and Parameters

LAD Box

Parameter | Data Type | Memory Area Description

EN BOOL I,Q, M, D,L [Enable input

WXOR_DW
EN ENO

HNE—

IN2 ouT

ENO

BOOL

LQ,MD,L

Enable output

IN1

DWORD

LQ,MD,L

First value for logic operation

IN2

DWORD

LQ,MD,L

Second value for logic operation

DWORD

LQ,MD,L

Result of logic operation

10.0

I

MDO —

DW#16#FFF —

WXOR_DW
EN ENO

IN1

ouT
IN2

—C D

A signal state of 1 at input | 0.0 activates the instruction.

Q4.0

IN1
IN2
ouT

— MD4

0101010101010101 0101010101010101
0000000000000000 0000111111111111
0101010101010101 0101010101010101

The signal state of output Q 4.0 is 1 if the operation is
executed.

Status Word Bits

Function is executed (EN = 1):

BR
Write 1

CC1
X

CCo
0 0

ov

oS OR
- X

STA RLO

FC
1 1 1

Figure 15-6

15-8

WXOr Double Word

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Shift and Rotate Instructions

Chapter Overview

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

16

Section Description Page
16.1 Shift Instructions 16-3
16.2 Rotate Instructions 16-1{}

16-1

Shift and Rotate Instructions

16.1 Shift Instructions

Shift Instructions

Shift Left Word

16-2

You can use the Shift instructions to move the contents of input IN bit by bit
to the left or the right. Shifting to the left multiplies the contents of input IN
by 2 to the power n (®; shifting to the right divides the contents of input IN
by 2 to the power n (2 For example, if you shift the binary equivalent of
the decimal value 3 to the left by 3 bits, you obtain the binary equivalent of
the decimal value 24 in the accumulator. If you shift the binary equivalent of
the decimal value 16 to the right by 2 bits, you obtain the binary equivalent
of the decimal value 4 in the accumulator.

The number that you supply for input parameter N indicates the number of
bits by which to shift. The bit places that are vacated by the Shift instruction
are either filled with zeros or with the signal state of the sign bit (a O stands
for positive and a 1 stands for negative). The signal state of the bit that is
shifted last is loaded into the CC 1 bit of the status word (see Secfion 6.3).
The CC 0 and QV bits of the status word are reset to 0. You can use jump
instructions to evaluate the CC 1 bit.

The following Shift instructions are available:

¢ Shift Left Word, Shift Left Double Word

e Shift Right Word, Shift Right Double Word

¢ Shift Right Integer, Shift Right Double Integer

A signal state of 1 at the Enable (EN) input activates the Shift Left Word
instruction. This instruction shifts bits 0 to 15 of input IN bit by bit to the
left. There is no carry to bit 16.

Input N specifies the number of bits by which to shift. If N is larger than 16,
the command writes a 0 into the low word of accumulator 1 and resets the
CC 0 and OV bits of the status word to 0. The bit positions at the right are
padded with zeros. The result of the shift operation can be scanned at
output OUT.

The operation triggered by this instruction always resets the CC 0 and OV
bits of the status word to 0. If the box is executed (EN = 1), ENO shows the
signal state of the bit shifted last (same as CC 1 and RLO in the status word).
The result is that other functions following this box that are connected by the
ENO (cascade arrangement) are not executed if the bit shifted last had a
signal state of 0.

Certain restrictions apply to the placement of the Shift Left Word box (see

Section 6]1).

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Shift and Rotate Instructions

Parameters: 15... .8 7. .0
IN |OOOO |1111 |0101 |0101 |
N / -— § p|aces /
ouT LOOOOl 1l 1101 |0101 |0100 |0000 |

- N _
These five bits l The vacated places
are lost. are filled with zeros.
The signal state of the bit that is shifted out
last is stored in bit CC 1 of the status word
(same as the signal state of ENO).
Table 16-1 Shift Left Word Box and Parameters
LAD Box Parameter | Data Type | Memory Area Description
EN BOOL I,Q, M, D, L |Enable input
SHLW ENO BOOL | M, D,L | Enabl tput
—1EN ENOI— » Q. M, D, nable outpu
IN WORD I,Q,M,D, L |Value to shift
IN—OUF
N N WORD I, Q, M, D, L | Number of bit positions by which to sh
ouT WORD I, Q, M, D, L |Result of shift operation
A signal state of 1 at input | 0.0
10.0 SHL_W Q4.0 activates the instruction.
|| EN ENO—S)
Memory word MWO is shifted to the
MWO —1 IN OUTH— MwWA4 left by the number of bits specified in
memory word MW2.
MW2 —| N
The result is put into memory word
MWa4. If the signal state of the bit
shifted last was 1, output Q4.0 is set.
Status Word Bits
Function is executed (EN = 1):
BR CCl CcCo ov 0os OR STA RLO FC
Write X X X 0 - X 1 X X
Figure 16-1 Shift Left Word

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

16-3

Shift and Rotate Instructions

Shift Left Double

Word

A signal state of 1 at the Enable (EN) input activates the Shift Left Double
Word instruction. This instruction shifts bits 0 to 31 of input IN bit by bit to

the left. Input N specifies the number of bits by which to shift. If N is larger
than 32, the command writes a 0 in output 0 and resets the CC 0 and OV bits
of the status word to 0. The bit positions at the right are padded with zeros.
The result of the shift operation can be scanned at output OUT.

The operation triggered by this instruction always resets the CC 0 and OV

bits of the status word to 0 if N is not equal to 0. If the box is executed

(EN = 1), ENO shows the signal state of the bit shifted last (same as CC 1

and RLO in the status word). The result is that other functions following this
box that are connected by the ENO (cascade arrangement) are not executed if
the bit shifted last had a signal state of 0.

Certain restrictions apply to the placement of the Shift Left Double Word box
(see Sectidn 6.1).

Table 16-2 Shift Left Double Word Box and Parameters

LAD Box Parameter | Data Type | Memory Area Description
EN BOOL I,Q, M, D,L [Enable input
SHL_DW ENO BOOL I M, D, L | Enabl tput
—1EN ENOH »Q, M, D, able outpu
IN DWORD I,Q, M, D, L [Value to shift
TN UuUl
4N N WORD I, Q, M, D,L [Number of bit positions by which to shift
ouT DWORD I, Q, M, D, L | Result of shift operation
A signal state of 1 at input | 0.0 activates the
100 SHL_DW Q4.0 instf]uction P
| | :
|| EN ENO—S)

MDO —IN OUT— MD10 the number of bits specified in memory word
MW4 —N Mwa4.

Memory double word MDO is shifted to the left by

The result is put into memory double word
MD10. If the signal state of the bit shifted last
was 1, output Q 4.0 is set.

Status Word Bits

Write

Function is executed (EN = 1):

BR
X

CC1 cCcCo ov (0N OR STA RLO
X X X - X X X

=3

Figure 16-2 Shift Left Double Word

16-4

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Shift and Rotate Instructions

Shift Right Word A signal state of 1 at the Enable (EN) input activates the Shift Right Word
instruction. This instruction shifts bits 0 to 15 of input IN bit by bit to the

right. Bits 16 to 31 are not affected. Input N specifies the number of bits by
which to shift. If N is larger than 16, the command writes a 0 in output O and
resets the CC 0 and OV bits of the status word to 0. The bit positions at the
left are padded with zeros. The result of the shift operation can be scanned at

output OUT.

The operation triggered by this instruction always resets the OV bit of the
status word to 0. If the box is executed (EN = 1), ENO shows the signal state
of the bit shifted last (same as CC 1 and RLO in the status word). The result
is that other functions following this box that are connected by the ENO
(cascade arrangement) are not executed if the bit shifted last had a signal
state of 0.

Certain restrictions apply to the placement of the Shift Right Word box (see
Section 6.11).

Table 16-3 Shift Right Word Box and Parameters
LAD Box Parameter | Data Type | Memory Area Description
EN BOOL I,Q, M, D, L |Enable input
SHR_W
- ENO BOOL I, Q, M, D,L |Enable output
—1EN ENO[—
IN WORD I, Q, M, D, L | Value to shift
IN—OUT
N N WORD I, Q, M, D,L | Number of bit positions by which to sh
WORD I, Q, M, D, L |Result of shift operation
A signal state of 1 at input | 0.0 activates the
‘l 0"0 SHR_W Q40 instruction.
|| EN ENO—(s)
Memory word MWO is shifted to the right by the
MWO —IN OUT— Mw4 number of bits specified in memory word MW2.
MW2 —|N))
The result is put into memory word MWA4. If the

signal state of the bit shifted last was 1, output
Q 4.0is set.

Status Word Bits

Function is executed (EN = 1):

BR CcC1 CCO oV oS OR STA RLO FC
Write X X X X - X X X 1
Figure 16-3 Shift Right Word

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

16-5

Shift and Rotate Instructions

Shift Right Double

Word

A signal state of 1 at the Enable (EN) input activates the Shift Right Double
Word instruction. This instruction shifts bits 0 to 31 of input IN bit by bit to

the right. Input N specifies the number of bits by which to shift. If N is larger
than 32, the command writes a 0 in output 0 and resets the CC 0 and OV bits
of the status word to 0. The bit positions at the left are padded with zeros.
The result of the shift operation can be scanned at output OUT.

The operation triggered by this instruction always resets the OV bit of the
status word to 0. If the box is executed (EN = 1), ENO shows the signal state
of the bit shifted last (same as CC 1 and RLO in the status word). The result
is that other functions following this box that are connected by the ENO
(cascade arrangement) are not executed if the bit shifted last had a signal
state of 0.

Certain restrictions apply to the placement of the Shift Right Double Word
box (see Sectidn 6.1).

Parameters:

IN

ouT

...16 15... ...0

‘1111‘1111‘0101‘0101‘1010‘1010‘1111‘1111|

3 places —»

‘0001‘1111‘1110‘1010‘1011‘0101‘0101‘1111|1__1_1]

—

|
The vacated places ‘

are filled with zeros. The signal state of the bit that is These two
shifted out last is stored in bit bits are lost.
CC 1 of the status word (same
as the signal state of ENO).
Figure 16-4 Shifting Bits of Input IN Three Bits to the Right
Table 16-4 Shift Right Double Word Box and Parameters
LAD Box Parameter | Data Type | Memory Area Description
EN BOOL I,Q, M, D,L [Enable input
SHR_DW ENO BOOL I M, D,L |Enabl tput
——EN ENO , Q, M, D, nable outpu
IN DWORD I, Q, M, D, L | Value to shift
IN—OUF
N N WORD I, Q, M, D,L [Number of bit positions by which to shift
ouT DWORD I, Q, M, D,L [Resultof shift operation

16-6

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Shift and Rotate Instructions

10.0 A signal state of 1 at input | 0.0 activates the
| SHR_DW Q4.0 instruction.
| EN ENO—(S)
Memory double word MDO is shifted to the right
MDO —IN OUT— MD10 by the number of bits specified in memory word
MW4 — N Mwa4.

The result is put into MD10. If the signal state of
the bit shifted last was 1, output Q 4.0 is set.

Status Word Bits

BR
Write X

Function is executed (EN = 1):

CCi1 Cco ov (ON] OR STA RLO

=3

X X X - X X X

Figure 16-5 Shift Right Double Word

Shift Right Integer

A signal state of 1 at the Enable (EN) input activates the Shift Right Integer
instruction. This instruction shifts bits 0 to 15 of input IN bit by bit to the
right. Input N specifies the number of bits by which to shift. If N is larger
than 16, the command behaves as if N were 16. The bit positions at the left
are padded according to the signal state of bit 15 (which is the sign of an
integer number), that is, they are filled with zeros if the number is positive,
and with ones if it is negative. The result of the shift operation can be
scanned at output OUT.

The operation triggered by this instruction always resets the CC 0 and OV
bits of the status word to 0. If the box is executed (EN = 1), ENO shows the
signal state of the bit shifted last (same as CC 1 and RLO in the status word).
The result is that other functions following this box that are connected by the
ENO (cascade arrangement) are not executed if the bit shifted last had a
signal state of 0.

Certain restrictions apply to the placement of the Shift Right Integer box (see

Sectior 6]1).

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

16-7

Shift and Rotate Instructions

Parameters: 15... .8 7. .0
IN |1010|1111|0000|1010|
N Sign bit \ 4 places—»
_____ 1
OUT|1111|1010|1111|0000|1010_!
The vacated places are ¢ \
filled with the signal The signal state of the bit that is These three
state of the sign bit. shifted out last is stored in bit bits are lost.
CC 1 of the status word (same as
the signal state of ENO).
Figure 16-6 Shifting Bits of Input IN Four Bits to the Right with Sign
Table 16-5 Shift Right Integer Box and Parameters
LAD Box Parameter | Data Type | Memory Area Description
EN BOOL I, Q, M, D,L [Enable input
SHR_I
—eN ENO ENO BOOL I, Q, M, D,L [Enable output
IN INT I,Q, M, D, L [Value to shift
IN—OUF
N N WORD I, Q, M, D,L [Number of bit positions by which to sh
ouT INT I, Q, M, D, L | Result of shift operation
A signal state of 1 at input | 0.0 activates the
10.0 SHR_I Q4.0 e P
| — instruction.
1 EN ENO—(S)
Memory word MWO is shifted to the right by
MWO —IN OuUT— Mw4 the number of bits specified in memory word
MW2 —N Mw2.

The result is put into memory word MWA4. If the
signal state of the bit shifted last was 1, output

Q 4.0is set.
Status Word Bits
Function is executed (EN = 1):
BR CC1 CCo oV oS OR STA RLO FC
Write X X X X - X X X 1

Figure 16-7 Shift Right Integer

16-8

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

=3

Shift and Rotate Instructions

Shifting Right
Double Integer

A signal state of 1 at the Enable (EN) input activates the Shift Right Double
Integer instruction. This instruction shifts the entire contents of input IN bit

by bit to the right. Input N specifies the number of bits by which to shift. If N
is larger than 32, the command behaves as if N were 32. The bit positions at
the left are padded according to the signal state of bit 31 (which is the sign of
a double integer number), that is, they are filled with zeros if the number is
positive, and with ones if it is negative. The result of the shift operation can
be scanned at output OUT.

The operation triggered by this instruction always resets the CC 0 and OV
bits of the status word to 0. If the box is executed (EN = 1), ENO shows the
signal state of the bit shifted last (same as CC 1 and RLO in the status word).
The result is that other functions following this box that are connected by the
ENO (cascade arrangement) are not executed if the bit shifted last had a
signal state of 0.

Certain restrictions apply to the placement of the Shift Right Double Integer
box (see Sectidn .1).

Table 16-6 Shift Right Double Integer Box and Parameters
LAD Box Parameter | Data Type | Memory Area Description
EN BOOL I,Q, M, D, L |Enable input
SHR_DI ENO BOOL | M, D,L |Enabl tput
EN ENO ,Q, M, D, nable outpu
IN DINT I, Q, M, D, L |[Value to shift
IN—OUF
N N WORD I, Q, M, D, L | Number of bit positions by which to sh
ouT DINT I,Q, M, D, L | Result of shift operation
A signal state of 1 at input | 0.0 activates the
100 SHR_DI Q4.0 instrguction. P
1 EN ENO—S)
Memory double word MDO is shifted to the right by
MDO — IN OUT[— MD10 the number of bits specified in memory word MW4.
MW4— N) .
The result is put into memory double word MD10.

If the signal state of the bit shifted last was 1,
output Q 4.0 is set.

Status Word Bits

Function is executed (EN = 1):

BR CC1 CCo
Write X X X

ov

(ON]

OR

STA RLO

s

Figure 16-8 Shift Right Double Integer

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

16-9

Shift and Rotate Instructions

16.2 Rotate Instructions

Description

Rotate Left Double
Word

You can use the Rotate instructions to rotate the entire contents of input IN
bit by bit to the left or to the right. The vacated bit places are filled with the
signal states of the bits that are shifted out of input IN.

The number that you supply for input parameter N specifies the number of
bits by which to rotate.

Depending on the instruction, rotation takes place via the CC 1 bit of the
status word (see Sectipn]6.3). The CC 0 bit of the status word is reset to 0.

The following Rotate instructions are available:
* Rotate Left Double Word
¢ Rotate Right Double Word

A signal state of 1 at the Enable (EN) input activates the Rotate Left Double
Word instruction. This instruction rotates the entire contents of input IN bit
by bit to the left. Input N specifies the number of bits by which to rotate. If N
is larger than 32, the double word is rotated ((N-1) modulo 32) +1) places.
The bit positions at the right are filled with the signal states of the bits
rotated. The result of the rotate operation can be scanned at output OUT.

The operation triggered by this instruction always resets the CC 0 and OV
bits of the status word to 0. If the box is executed (EN = 1), ENO shows the
signal state of the bit shifted last (same as CC 1 and RLO in the status word,
see Figure 16-9). The result is that other functions following this box that are
connected by the ENO (cascade arrangement) are not executed if the bit
shifted last had a signal state of 0.

Certain restrictions apply to the placement of the Rotate Left Double Word
box (see Sectidn 6.1).

Parameters:

IN

N

r——
ouT L111|1000|0101|0101|0000|0111|1000|0111|1111|

}

The signal states of the three \
bits that are shifted out are The signal state of the last
inserted in the vacated places. bit shifted is also stored in

31.. ...16 15... .0

1111|0000|1010|1010|0000|1111|OOOO|1111

<— 3 places

bit CC 1 (same as the signal
state of ENO).

Figure 16-9 Rotating Bits of Input IN Three Bits to the Left

16-10

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Shift and Rotate Instructions

Table 16-7 Rotate Left Double Word Box and Parameters
LAD Box Parameter | Data Type | Memory Area Description
EN BOOL I,Q, M, D, L |Enable input
ROL_DW ENO BOOL I,Q,M, D, L |Enable output
EN ENO— [y DWORD |I,Q,M,D,L | Value to rotate
N OUT — Number of bit positions by which to
N WORD ,Q M,D,L
N rotate
ouT DWORD I, Q, M, D,L |Resultof rotate operation
A signal state of 1 at input | 0.0 activates the
10.0 ROL_DW Q4.0 instr%ction P
| | :
| EN ENO—S)
Memory double word MDO is rotated to the left
MDO —IN OUT[— MD10 by the number of bits specified in memory word
MW4— N Mw4.

The result is put into memory double word
MD10. If the signal state of the bit shifted last
was 1, output Q 4.0 is set.

Status Word Bits

Function is executed (EN = 1):

Write

BR
X

CCi1 Cco ov (ON] OR STA RLO
X X X - X X X

s

Figure 16-10 Rotate Left Double Word

Rotate Right
Double Word

A signal state of 1 at the Enable (EN) input activates the Rotate Right Double
Word instruction. This instruction rotates the entire contents of input IN bit

by bit to the right. Input N specifies the number of bits by which to rotate.

The value of N can be between 0 and 31. If N is larger than 32, the double
word is rotated ((N-1) modulo 32) +1) places. The bit positions at the left are
filled with the signal states of the bits rotated. The result of the rotate
operation can be scanned at output OUT.

The operation triggered by this instruction always resets the CC 0 and OV
bits of the status word to 0. If the box is executed (EN = 1), ENO shows the
signal state of the bit shifted last (same as CC 1 and RLO in the status word).
The result is that other functions following this box that are connected by the
ENO (cascade arrangement) are not executed if the bit shifted last had a
signal state of 0.

Certain restrictions apply to the placement of the Rotate Right Double Word
box (see Sectign 6.1).

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

16-11

Shift and Rotate Instructions

Parameters: 31... .16 15... .0
IN 1010[1010]0000|1111]0000[1111]0101|0101
N 3 places—*
ouT |1011|0101|01oo|0001|1110|0001|1110|101o|1:0:1]

|t

The signal state of the last bit shifted
is also stored in bit CC 1 (same as
the signal state of ENO).

The signal states of<:f_J

the three bits that are
shifted out are inserted
in the vacated places.

Figure 16-11 Rotating Bits of Input IN Three Bits to the Right

Table 16-8 Rotate Right Double Word Box and Parameters
LAD Box Parameter | Data Type | Memory Area Description
EN BOOL I, Q, M, D,L [Enable input
ROR_DW ENO BOOL I, Q, M, D, L [Enable output
EN ENO™ Fiy DWORD |I,Q,M,D,L |Value to rotate
-IN OouTI— Number of bit positions by which to
N WORD LQ M, D, L
4N rotate
ouT DWORD I, Q, M, D,L [Resultof rotate operation
A signal state of 1 at input | 0.0 activates the
|| Oio ROR_DW Q40 instruction.
11 EN ENO—S)
Memory double word MDO is rotated to the right
MDO —| IN OUT— MD10 by the number of bits specified in memory word
MW4— N Mwa4.

The result is put into memory double word
MD10. If the signal state of the bit shifted last
was 1, output Q 4.0 is set.

Status Word Bits

Function is executed (EN = 1):

BR CC1 CCO oV
Write X X X X

(O OR STA RLO

=3

Figure 16-12 Rotate Right Double Word

16-12

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Data Block Instructions

Chapter Overview

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

17

Section Description Page
171 Open Data Block: DB or DI 17-3

17-1

Data Block Instructions

17.1 Open Data Block: DB or DI

Description You can use the Open Data Block: DB or DI instruction to open an already
existing data block as DB or DI. The number of the data block is transferred
in the DB or DI register. The subsequent DB and DI commands access the
corresponding blocks depending on the register contents.

Table 17-1 Open Data Block: DB or DI Element and Parameters, with International Short Name

LAD Element Parameter | Data Type | Memory Area Description
<DB number> or
<Dl number> Number of BLOCK_DB |- The number range of DB or DI
DB or DI depends on your CPU.
—(OPN)
Table 17-2 Open Data Block: DB or DI Element and Parameters, with SIMATIC Short Name
LAD Element Parameter | Data Type | Memory Area Description
<DB number> or
<Pimumber | Junkerof g ock o |- o mber ange ol 22 r
—(AUF) Y '
DB10 DB10 is the currently opened
(OPN) data block. That is why the
scan at DBX0.0 refers to bit 0
of data byte 0 of data block
DB10. The signal state of this
DBX0.0 4.0
_(| Q/) bit is assigned to output Q 4.0.
\ \

Status Word Bits

BR CCl CcCo ov 0os OR RLO FC
Write - - - - - - - -
This instruction does not read or change the bits of the status word.
Figure 17-1 Open Data Block: DB or DI

17-2

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Jump Instructions

Chapter Overview

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

18

Section Description Page
18.1 Overview [18-2
18.2 Jump in the Block If RLO = 1 (Unconditional Jump) 18-
18.3 Jump in the Block If RLO = 1 (Conditional Jump) [18-4
18.4 Jump in the Block If RLO = 0 (Jump-If-Not) [18-9
18.5 Label 18-

18-1

Jump Instructions

18.1 Overview

Label as Address

Label as
Destination

18-2

The address of a Jump instruction is a label. A label consists of a maximum
of four characters. The first character must be a letter of the alphabet; the
other characters can be letters or numbers (for example, SEG3). The jump
label indicates the destination to which you want the program to jump.

You enter the label above the jump coil (see Figure 18-1).

The destination label must be at the beginning of a network. You enter the
destination label at the beginning of the network by selecting LABEL from
the ladder logic browser. An empty box appears. In the box, you type the
name of the label (see Figure 18-1).

Network 1
SEG3
QvP)
Network 2
10.1 Q4.0
— |)

Network X
SEG3| 104 Q4.1
‘ | | CRD

Figure 18-1 Label as Address and Destination

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Jump Instructions

18.2 Jump in the Block If RLO = 1 (Unconditional Jump)

Description

The Unconditional Jump instruction corresponds to a “go to label”
instruction. No additional LAD element may be positioned between the left
power rail and the operation. None of the instructions between the jump
operation and the label is executed.

You can use this instruction in all logic blocks: organization blocks (OBs),
function blocks (FBs), and functions (FCs).

Table 18-1 Unconditional Jump Element and Parameters

LAD Element Parameter | Data Type | Memory Area Description
<address> Name of a - - The address determines the mark tp
label which the absolute jump is made.
—CIMP D
Network 1
CAS1
Qvp
The jump is executed every time. None of
the instructions between the jump
Network X operation and the label is executed.
CAS1]10.4 Q41
| CRD
Status Word Bits
BR CCl CcCo oV 0os OR STA RLO FC
Write - - - - - - - - -

Figure 18-2 Unconditional Jump: Go to Label

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

18-3

Jump Instructions

18.3 Jump in the Block If RLO = 1 (Conditional Jump)

Description

The Conditional Jump instruction corresponds to a “go to label” instruction if
RLO = 1. Use the Ladder element “Jump unconditional” for this operation
but only with an advance logic operation. The conditional jump is only
executed when the result of this logic operation is RLO = 1. None of the
instructions between the jump operation and the label is executed.

You can use this instruction in all logic blocks: organization blocks (OBs),
function blocks (FBs), and functions (FCs).

Table 18-2 Conditional Jump Element and Parameters

LAD Element Parameter | Data Type | Memory Area Description
<address> Name of a - - The address determines the mark tp
label which the jump is made when the
—IvP D RLO = 1.
Network 1
10.0 CAS1
|| e) . . .
1T JMP If the signal state of input 1 0.0 is 1, the
jump to label CASL1 is executed. The
instruction to reset output Q 4.0 is not
executed, even if the signal state of input
Network 2 10.3is 1.
10.3 Q4.0
N (R
Network 3
4.1
—| CAS1 Il O|.4 /Q
11 (R)

Status Word Bits

BR
Write -

CCl1 CCo oV 0s OR STA RLO
- - - - 0 1 1

°d

Figure 18-3 Conditional Jump: Go to Label

18-4

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Jump Instructions

18.4 Jump in the Block If RLO = 0 (Jump-If-Not)

Description The Jump-If-Not instruction corresponds to a “go to label” instruction that is
executed if the RLO is 0.

You can use this instruction in all logic blocks: organization blocks (OBs),
function blocks (FBs), and functions (FCs).

Table 18-3 Jump-If-Not Element and Parameters

LAD Element Parameter | Data Type | Memory Area Description
<address> Name of a - - The address determines the mark tp
label which the jump is made when the
—C IMPN D RLO = 0.
Network 1
| 10.0 CAS1
||

If the signal state of input | 0.0 is O, the
jump to label CAS1 is executed. The
instruction to reset output Q 4.0 is not
executed, even if the signal state of input

‘ I QMP@

Network 2 10.3is 1.
10. 4.
| | OI3 S 0 None of the instructions between the
R> jump operation and the label is executed.

Network 3
r CAS1|10.4 Q41
| e
‘ |] RD
Status Word Bits
BR CcC1 CCO ov oS OR STA RLO FC
Write - - — — - 0 1 1 0

Figure 18-4 Jump-If-Not

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 18-5

Jump Instructions

LABEL is the identifier for the destination of a jump instruction. For every

—(JIMP) or —(JMPN) a label must exist.

remaining characters: letter or alphanumeric

18.5 Label
Description
LAD Element
4 characters:
—| LABEL First character: letter
Network 1
‘ 1 0.0 CAS1
| | /JMP>
Network 2
10.3 Q4.0
'
| RD
Network 3
‘— CAS1 | 104 Q41
| | 'é R>

Figure 18-5Label

18-6

If 1 0.0 =1, the jump to label CAS1 is

Due to the jump, the operation “Reset
output” at Q 4.0 is not executed even if

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Status Bit Instructions

Chapter Overview

Section Description Page
19.1 Overview [19-2
19.2 Exception Bit BR Memory 19-
19.3 Result Bits [19-4
19.4 Result Bit Unordered [19-4
19.5 Exception Bit Overflow [19-7
19.6 Exception Bit Overflow Stored 19-

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

19-1

Status Bit Instructions

19.1 Overview

Description

Status Word

Parameters

19-2

The status bit instructions are bit logic instructions (see Séctibn 8.1) that
work with the bits of the status word (see Se¢tioh 6.3). Each of these
instructions reacts to one of the following conditions that is indicated by one
or more bits of the status word:

¢ The binary result bit is set (that is, has a signal state of 1).
e The result of a math function is related to 0 in one of the following ways:
— Greater than 0 (>0)
— Less than 0 (<0)
— Greater than or equal to 0 (>=0)
— Less than or equal to 0 (<=0)
— Equal to 0 (==0)
— Not equal to 0 (<>0)
* The result of a math function is unordered.
¢ A math function had an overflow.

When a status bit instruction is connected in series, it combines the result of
its signal state check with the previous result of logic operation according to
the And truth table (see Sect[on]6.2 and Table 6-8). When a status bit
instruction is connected in parallel, it combines its result with the previous
RLO according to the Or truth table (see Se¢tioh 6.2 and Table 6-9).

In this chapter, the Exception Bit BR Memory element, which checks the
signal state of the BR (Binary Result) bit of the status word, is shown in its
international and SIMATIC form.

The status word is a register in the memory of your CPU that contains bits
that you can reference in the address of bit and word logic instructions.
Figure 19-1 shows the structure of the status word. For more information on
the individual bits of the status word, see Setioh 6.3.

215 .29 28 27 26 25 24 23 22 21 20

‘ BR ‘CCl‘CCO‘ OV‘ OS‘ OR ‘ STA‘ RLO‘ ﬁ‘

Figure 19-1 Structure of the Status Word

The following LAD elements do not have any enterable parameters.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Status Bit Instructions

19.2 Exception Bit BR Memory

Description You can use the Exception Bit BR Memory instruction to check the signal
state of the BR (Binary Result) bit of the status word (see Séction 6.3). When
used in series, this instruction combines the result of its check with the
previous result of logic operation (RLO) according to the And truth table
(see Section 6.2 and Table 6-8). When used in parallel, this instruction
combines the result of its check with the previous RLO according to the Or
truth table (see Sectibn 6.2 and Table 6-9).

The Element and Figure 19-2 shows the Exception Bit BR Memory element and its negated
Its Negated Form form. The elements are pictured with their international and SIMATIC short
names.
International element SIMATIC element
BR BIE

BR BIE

—

Figure 19-2 Exception Bit BR Memory Element and Its Negated Form

10.0 BR Q4.0
Output Q 4.0 is set if the signal state at input

b b (s) 1 0.0 is 1 or the signal state at input 1 0.2 is O,
and, in addition to this RLO, the signal state

.I Oiz of the BR bit is 1.
Status Word Bits
BR CC1 CCO oV oS OR STA RLO FC
Write - - - - - X X X 1

Figure 19-3 Exception Bit BR Memory

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 19-3

Status Bit Instructions

19.3 Result Bits

Description You can use the Result Bit instructions to determine the relationship of the
result of a math function to zero, that is, if the result is >0, <0, >=0, <=0,
==0, or <>0. This instruction uses a comparison to zero as its address (see
Table 19-1). Internally, the CPU goes to the condition code bits of the status
word (CC 1 and CC 0, see Secfior] 6.3) and checks the combination of signal
states in these locations. The combination tells the CPU the relationship of
the result to 0. If the comparison condition indicated in the address is
fulfilled, the result of this signal state check is 1.
When used in series, this instruction combines the result of its check with the
previous result of logic operation (RLO) according to the And truth table
(see Sectidn 6|2 and Table 6-8). When used in parallel, this instruction
combines the result of its check with the previous RLO according to the Or
truth table (see Sectibn 6.2 and Table 6-9).
Table 19-1 Result Bit Elements and Their Negated Forms
LAD Element Description
>0
{ } The Result Bit Greater Than 0 instruction determines whether or not the result ofj|a math
>0 function is greater than 0. This instruction checks the combination in the CC 1 and CC 0
F (condition code) bits of the status word to determine the relationship of a result tq 0.
<0
—{ }— The Result Bit Less Than 0 instruction determines whether or not the result of a math
<0 function is less than 0. This instruction checks the combination in the CC 1 and ¢C 0
(condition code) bits of the status word to determine the relationship of a result tq 0.
>=0
The Result Bit Greater Equal 0 instruction determines whether or not the result ofja math
function is greater than or equal to 0. This instruction checks the combination in the CC 1
>=0 and CC 0 (condition code) bits of the status word to determine the relationship of a result
/F to 0.
<=0
The Result Bit Less Equal 0 instruction determines whether or not the result of ajmath
function is less than or equal to 0. This instruction checks the combination in the |CC 1
<=0 and CC 0 (condition code) bits of the status word to determine the relationship of a result

to 0.

The Result Bit Equal 0 instruction determines whether or not the result of a math
function is equal to 0. This instruction checks the combination in the CC 1 and CC 0
(condition code) bits of the status word to determine the relationship of a result tq 0.

The Result Bit Not Equal O instruction determines whether or not the result of a math
function is not equal to 0. This instruction checks the combination in the CC 1 and CC 0
(condition code) bits of the status word to determine the relationship of a result tq 0.

19-4

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Status Bit Instructions

SUB_I

Q4.0

EN

IW0—
IW2—

IN2
IN2

ENO

ouT

>0
-

—(s)

— MW10

IW0—
IW2—

SUB_I

EN

IN2
IN2

ENO

ouT

>0 Q4.0

—L s

— MW10

If the signal state at input 1 0.0 is 1, the
SUB_I box is activated. If the value of
input word IWO is higher than the value of
input word IW2, the result of the math
function IWO — IW2 is greater than 0.

If the signal state of EN is 1 (activated)
and an error occurs while the instruction
is being executed, the signal state of ENO
is 0.

Output Q 4.0 is set if the function is
executed properly and the result is
greater than 0. If the signal state of input
I 0.0 is O (not activated), the signal state
of both EN and ENO is 0.

Output Q 4.0 is set if the function is
executed properly and the result is less
than or equal to 0. If the signal state of
input 1 0.0 is 0 (not activated), the signal
state of both EN and ENO is 0. If the
signal state of EN is 1 (activated) and an
error occurs while the instruction is being
executed, the signal state of ENO is O.

Status Word Bits

Write

BR

CC1

CCoO ov

(O]

OR STA RLO FC
X X X 1

Figure 19-4

Result Bit Greater Than 0 and Negated Result Bit Greater Than 0

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

19-5

Status Bit Instructions

19.4 Exception Bits Unordered

Description

The Element and
Its Negated Form

You can use the Exception Bit Unordered instruction to check whether or not
the result of a floating-point math function is unordered (that is, if one of the
values in the math function is not a valid floating-point number). Therefore,
the condition code bits of the status word (CC 1 and CC 0, see $ection 6.3)
are evaluated. If the result of the math function is unordered (UO) the signal
state check produces a result of 1. If the combination in CC 1 and CC 0 does
not indicate unordered, the result of the signal state check is 0.

When used in series, this instruction combines the result of its check with the
previous result of logic operation (RLO, see Sedtioh 6.3) according to the
And truth table (see Section b.2 and Table 6-8). When used in parallel, this
instruction combines the result of its check with the previous RLO according
to the Or truth table (see Sectlonl6.2 and Table 6-9).

uo

— "

uo

A|/|’

Figure 19-5 Exception Bit Unordered Element and Its Negated Form

If the signal state at input 1 0.0 is 1, the

EN

IDO — IN1
ID4 —IN2

10.0 DIV R uo Q4.0 DIV_R box is activated. If the value of either

| | ; input double word IDO or ID4 is not a valid
ENO T (s) floating-point number, the floating-point
math function is unordered. If the signal
state of EN is 1 (activated) and an error
OUTH MD10 occurs while the instruction is being

executed, the signal state of ENO is O.

Output Q 4.0 is set if the function DIR_V is
executed, but one of the values in the math
function is not a valid floating-point number.
If the signal state of input 1 0.0 is O (not
activated), the signal state of both EN and
ENO is 0.

Status Word Bits

BR
Write -

CC1 CCO oV oS OR STA RLO FC
- - - - X X X 1

Figure 19-6 Exception Bit Unordered

19-6

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Status Bit Instructions

19.5 Exception Bit Overflow

Description

The Element and
Its Negated Form

You can use the Exception Bit Overflow instruction to recognize an overflow
(OV) in the last math function. If, after the system executes a math function,
the result is outside the permissible negative range or outside the permissible
positive range, the OV bit in the status word (see Séctidn 6.3) is set. The
instruction checks the signal state of this bit. This bit is reset by error-free
running math functions.

When used in series, this instruction combines the result of its check with the
previous result of logic operation according to the And truth table

(see Section 6.2 and Table 6-8). When used in parallel, this instruction
combines the result of its check with the previous RLO according to the Or
truth table (see Sectipn 6.2 and Table 6-9).

ov

—1 7

ov

<|/"

Figure 19-7 Exception Bit Overflow Element and Its Negated Form

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

19-7

Status Bit Instructions

Network 1:

10.0 SUB | If the signal state at input 1 0.0 is 1, the SUB_|
EN ENO box is activated. If the result of the math function
input word IWO0 minus input word IW2 is outside
N2 the permissible range for an integer, the OV bit in
the status word is set.

IW0—
IW2— IN2 OuT - MW10

Network 2: The result of a signal state check with OV is 1.
Output Q 4.0 is set if the check with OV is 1 and
oV 10.1 10.2 Q4.0 the RLO of network 2 is 1 (that is, if the RLO just

1 H H—s) prior to output Q 4.0 is 1).

10.2 If the signal state of input 1 0.0 is 0 (not

| activated), the signal state of both EN and ENO
is 0. If the signal state of EN is 1 (activated) and
the result of the math function is out of range, the
signal state of ENO is 0.

Note: The check with OV is only necessary
because of the different networks. Otherwise, it is
possible to take the ENO output of the math
function, which is 0 if the result is outside the
permissible range.

Status Word Bits

BR CC1 CCO ov oS OR STA RLO
Write — - - — - X X X

=3

Figure 19-8 Exception Bit Overflow

Ladder Logic (LAD) for S7-300 and S7-400
19-8 C79000-G7076-C504-02

Status Bit Instructions

19.6 Exception Bit Overflow Stored

Description

The Element and
Its Negated Form

You can use the Exception Bit Overflow Stored instruction to recognize a
latching overflow (overflow stored, OS) in a math function. If, after the

system executes a math function, the result is outside the permissible
negative range or outside the permissible positive range, the OS bit in the
status word (see Sect6.3) is set. The instruction checks the signal state of
this bit. Unlike the OV (overflow) bit, the OS bit remains set by error-free
running math functions (see Section 19.5).

When used in series, this instruction combines the result of its check with the
previous result of logic operation (RLO) according to the And truth table

(see Section 6.2 and Table 6-8). When used in parallel, this instruction
combines the result of its check with the previous RLO according to the Or
truth table (see Sectibn 6.2 and Table 6-9).

(O

—1 "

(ON)

/!/"

Figure 19-9 Exception Bit Overflow Stored Element and Its Negated Form

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

19-9

Status Bit Instructions

Network 1:

10.0 MUL_|

EN ENO

IW0— IN1
IW2— IN2

OUT |- MD8

Network 2:

10.1 ADD_|

EN ENO

IWO0— IN1
IW2— IN2

OouUT — MW12

Network 3:
| oS Q4.0

LT (s)

If the signal state at input 1 0.0 is 1, the
MUL_I box is activated. If the signal state
atinput10.1is 1, the ADD_I box is
activated. If the result of one of the math
functions is outside the permissible range
for an integer, the OS bit in the status
word is set.

The result of a signal state check with OS
is 1. Output Q 4.0 is set if the check with
OSis 1.

In network 1, if the signal state of input

1 0.0 is O (not activated), the signal state
of both EN and ENO is 0. If the signal
state of EN is 1 (activated) and the result
of the math function is out of range, the
signal state of ENO is 0.

In network 2, if the signal state of input

1 0.1 is O (not activated), the signal state
of both EN and ENO is 0. If the signal
state of EN is 1 (activated) and the result
of the math function is out of range, the
signal state of ENO is 0.

Note: The check with OS is only
necessary because of the different
networks. Otherwise it is possible to take
the ENO output of the first math function
and connect it with the EN input of the
second (cascade arrangement).

Status Word Bits

BR CC1 CCo (0)Y]
Write - - - -

oS OR STA RLO

s

Figure 19-10 Exception Bit Overflow Stored

19-10

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Program Control Instructions

Chapter Overview

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

20

Section Description Page
20.1 Calling FCs/SFCs from Coil [20-2
20.2 Calling FBs, FCs, SFBs, SFCs, and Multiple Instances 20-
20.3 Return [20-7
204 Master Control Relay Instructions [20-9
20.5 Master Control Relay Activate/Deactivate [20-9
20.6 Master Control Relay On/Off 20-1

20-1

Program Control Instructions

20.1 Calling FCs/SFCs from Colil

Description You can use the Call FC/SFC from Cail instruction to call a function (FC) or
a system function (SFC) that has no parameters. Depending on the preceding
link, the call is conditional or unconditional (see the example in Figure 20-1).

In the case of a conditional call, you cannot enter parameters of data type
BLOCK_FC in the code section of a function (FC). Within a function block
(FB), however, you can enter BLOCK_FC as a parameter type.

A conditional call is executed only if the RLO is 1. If a conditional call is not
executed, the RLO after the call instruction is 0. If the instruction is
executed, it performs the following functions:

¢ Saves the address that it needs to return to the calling block

e Saves the selectors of both current data blocks (DB and DI)

¢ Changes the current local data range to the previous local data range
¢ Pushes the MA bit (MCR Active bit) to the block stack (BSTACK)

¢ Creates the new local data range for the called FC or SFC

After all this, program processing continues in the called block. For
information on the passing of parameters, se®tbgramming Manual
1120.

Table 20-1 Call FC/SFC from Coil Element and Parameter

LAD Element Parameter | Data Type | Memory Area Description

Number of the FC or SFC (for example
FC10 or SFC59). The SFCs that are
available depend on your CPU.

Number In the case of a conditional call, you
—(CALL) Number | BLOCK_FC - cannot enter parameters of data type
BLOCK_FC within a function (FC).
Within a function block, however, you
can enter BLOCK_FC as a parameter

type.

Ladder Logic (LAD) for S7-300 and S7-400
20-2 C79000-G7076-C504-02

Program Control Instructions

DB10

FC11

If the unconditional call of FC10 is executed, the CALL instruction performs the following

functions:

Saves the address that it needs to return to the current FB
Saves the selectors for DB10 and for the instance data block of the FB
Pushes the MA bit, set to 1 in the MCRA instruction, to the block stack (BSTACK) and

resets this bit to O for the called FC10

Program processing continues in FC10. If you want to use the MCR function in FC10, you must
reactivate it there. When FC10 is finished, program processing returns to the calling FB. The
MA bit is restored, and DB10 and the instance data block of the user-defined FB are the current

DBs again, regardless of which DBs FC10 used.

After jumping back from FC10 the signal state of input | 0.0 is assigned to output Q 4.0. The call
of FC11 is a conditional call. It is executed only if the signal state of input 1 0.1 is 1. If the call is
executed, the function is the same as for calling FC10.

(oPN)

(MCRA)

(CALL)

Q4.0

()
(MCRD)

(CALL)

Status Word Bits

Unconditional Call

BR CC1 CCoO (0)Y] oS OR STA RLO FC
Write - - - - 0 0 1 - 0
Conditional Call o
BR CCcl1 CCO oV oS OR STA RLO FC
Write - - - - 0 0 1 1 0
Figure 20-1 Call FC/SFC from Caoill
Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 20-3

Program Control Instructions

20.2 Calling FBs, FCs, SFBs, SFCs, and Multiple Instances

Description You can call function blocks (FBs), functions (FCs), system function blocks
(SFBs), and system functions (SFCs), and multiple instances by selecting
them from the “Program Elements” list box. They are at the end of the list of
instruction families under the following names:

e FB Blocks

* FC Blocks

* SFB Blocks

¢ SFC Blocks

¢ Multiple Instances
e Libraries

When you select one of these blocks, a box appears on your screen with the
number or symbolic name of the function or function block and the
parameters that belong to it.

The block that you call must have been compiled and must already exist in
your program file, in the library, or on the CPU.

If the call FB, FC, SFB, SFC, and multiple instances instruction is executed,
it performs the following functions:

¢ Saves the address that it needs to return to the calling block

¢ Saves the selectors of both current data blocks (DB and DI)

¢ Changes the previous local data range to the current local data range
e Pushes the MA bhit (MCR Active bit) to the block stack (BSTACK)

¢ Creates the new local data range for the called FC or SFC

Note

When the DB and DI registers are saved, they may not point to the data
blocks that you opened. Because of the copy-in and copy-out mechanism for
passing parameters, especially where function blocks are concerned, the
compiler sometimes overwrites the DB register. Se@tbgramming
Manual/234 for more details.

After this, program processing continues in the called block.

Ladder Logic (LAD) for S7-300 and S7-400
20-4 C79000-G7076-C504-02

Program Control Instructions

Enable Output

Effect of the Call
on the Bits of the
Status Word

The enable output (ENO) of a Ladder box corresponds to the BR bit of the
status word (see Section6.3). When writing a function block or function that
you want to call from Ladder, no matter whether you write the FB or FC in
STL or Ladder, you are responsible for managing the BR bit. You should use
the SAVE instruction (in STL) or the —(SAVE) coil (in Ladder) to store an
RLO in the BR bit according to the following criteria:

e Store an RLO of 1 in the BR bit for a case where the FB or FC is
executed without error.

e Store an RLO of 0 in the BR bit for a case where the FB or FC is
executed with error

You should program these instructions at the end of the FB or FC so that
these are the last instructions that are executed in the block.

Warning
Possible unintentional resetting of the BR bit to 0.

When writing FBs and FCs in LAD, if you fail to manage the BR bit as
described above, one FB or FC may overwrite the BR bit of another FB
or FC.

To avoid this problem, store the RLO at the end of each FB or FC as
described above.

Figure 20-2 shows the effects of a conditional and an unconditional call of a
block on the bits of the status word (see Settioh 6.3).

Conditional: Write
Unconditional: Write

BR CC1 CCO ov oS OR STA RLO FC
X - - - 0 0 X
- - - 0 0 1 - X

Figure 20-2 Effect of a Block Call on the Bits of the Status Word

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

20-5

Program Control Instructions

Parameters

Table 20-2

The parameters that have been defined in the VAR section of the block will
be displayed in the ladder box. Supplying parameters differs depending on
the type of block as follows:

¢ For a function (FC), you must supply actual parameters for all of the
formal parameters.

* The entry of actual parameters is optional with function blocks (FBSs).
You must, however, attach an instance data block (instance DB) to the
FB. If an actual parameter has not been attached to a formal parameter,
the FB works with the values that exist in its instance DB.

¢ With multiple instances, you do not need to specify the instance DB since
the box that is called has already been assigned the DB number (for more
information about declaring multiple instances, refer to Sn 3.5).

For structured IN/OUT parameters and parameters of the types “Pointer” and
“Array”, you must make an actual parameter available (at least during the
first call).

Every actual parameter that you make available when calling a function
block must have the same data type as its formal parameter.

For information on how to program a function or how to work with its
parameters, see tikgogramming Manual234/

Table 20-2 shows a box for calling FBs, FCs, SFBs, SFCs, and multiple
instances and describes the parameters common to the box for all these
blocks. When you call your block from the Instruction Browser, the block
number appears automatically at the top of the block (number of the FB, FC,
SFB, or SFC, for example, FC10).

Box and Parameters for Calling FBs, FCs, SFBs, SFCs, and Multiple Instances

LAD Box

Parameter | Data Type | Memory Area Description

DB No.

Block no.

— IN/JOUT

—1 EN ENO

Instance data block number. You need to
supply this information for calling FBs
only.

DB No. BLOCK_DB -

— IN ouT

EN BOOL I, Q, M, D, L |Enable input

ENO BOOL

I, Q, M, D, L | Enable output

DB13 before

Actual addresses,
the values of which
are copied into
instance data block

processing FB10.

DB13

Calls FB10 (using
FB10 instance DB13)

EN ENO ——7FMM—
1.0 __{ Stat Run |— M2.1

1.1 —] Stop
MW20 —| Length

The value of this parameter is
copied from DB13 into M 2.1 after
processing FB10.

Formal parameters of the FB

Figure 20-3 Call FB from Box

20-6

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Program Control Instructions

20.3 Return

Description You can use the Return instruction to abandon blocks. You can abandon a
block conditionally. Return saves the RLO to the BR bit of the status word.

If a block is abandoned because of a conditional return, the signal state of the

RLO and the BR bit in the block to which program control returns is 1.

Table 20-3 Return Element

LAD Element Parameter | Data Type | Memory Area Description

—(RET) None - - _

| | /RET) If the signal state of input | 0.0 is 1, the block is
| b \ abandoned. The BR bit of the status word then has the
same signal state as input 1 0.0 (= 1)

Status Word Bits

Conditional Return (Return if RLO = 1)

BR CC1 CCco oV oS OR STA RLO FC
Write X - - - X 0 1 1 0

Figure 20-4 Return

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 20-7

Program Control Instructions

20.4 Master Control Relay Instructions
Definition of The Master Control Relay (MCR, see also Setion|20.5) is an American relay
Master Control ladder logic master switch for energizing and de-energizing power flow
Relay (current path). A de-energized current path corresponds to an instruction
sequence that writes a zero value instead of the calculated value, or, to an
instruction sequence that leaves the existing memory value unchanged.
Operations triggered by the instructions shown in Table 20-4 are dependent
on the MCR.
The Output Coil and Midline Output instructions write a 0 to the memory if
the MCR is 0. The Set Coil and Reset Coil instructions leave the existing
value unchanged (see Table 20-5).
Table 20-4 Instructions Influenced by an MCR Zone
Element or Name in Box Instruction Name Section in This
Manual
i #> Midline Output 8.5
() Output Caoll 8.4
< S) Set Coil 8.8
(R) Reset Coil 8.9
SR Set_Reset Flipflop 8.22
RS Reset_Set Flipflop 8.23
MOVE Assign a Value 14.1
Table 20-5 Operations Dependent on MCR and How They React to Its Signal State
Signal State of Output Coil or Sector Set or Reset Assign a Value
MCR Midline Output
MOVE
—(D —(s) —(RrR)
— (#)— SR RS
Writes O Does not write Writes 0
0 (Imitates a relay that falls to its(Imitates a latching relay that (Imitates a component that, on
quiet state when voltage is | remains in its current state | loss of voltage, produces a
removed) when voltage is removed) | value of 0)
1 Normal execution Normal execution Normal execution

20-8

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Program Control Instructions

20.5 Master Control Relay Activate/Deactivate

MCR Activate

With the instructiomctivate Master Control Relaypu switch on the
MCR-dependency of subsequent commands. After entering this command,
you can program the MCR zones with these instructions (see $ectibn 20.6).
When your program activates an MCR area, all MCR actions depend on the
content of the MCR stack (see Figure B-4).

Table 20-6 Master Control Relay Activate Element

LAD Element

Parameter | Data Type | Memory Area Description

—CMCRA

None - - Activates the MCR function

MCR Deactivate

With the instructiorDeactivate Master Control Relayou switch off the
MCR-dependency of subsequent commands. After this instruction, you
cannot program any more MCR zones. When your program deactivates an
MCR area, the MCR is always energized irrespective of the entries in the
MCR stack.

Table 20-7 Master Control Relay Deactivate Element

LAD Element

Parameter | Data Type | Memory Area Description

—CMCRDD

None - - Deactivates the MCR function

The MCR stack and the bit that controls its dependency (the MA bit) relate to
each level and have to be saved and fetched every time you switch to the
sequence level. They are preset at the beginning of every sequence level
(MCR entry bits 1 to 8 are set to 1, the MCR stack pointer is set to 0 and the
MA bit is set to 0).

The MCR stack is passed on from block to block and the MA bit is saved and
set to 0 every time a block is called. It is fetched back at the end of the block.

The MCR can be implemented in such a way that it optimizes the run time of
code-generating CPUs. The reason for this is that the dependency of the
MCR is not passed on by the block; it must be explicitly activated by an
MCR instruction. A code-generating CPU recognizes this instruction and
generates the additional code necessary for the evaluation of the MCR stack
until it recognizes an MCR instruction or reaches the end of the block. With
instructions outside the MCRA/MCRD range, there is no increase of the
runtime.

The instructions MCRA and MCRD must always be used in pairs within your
program.

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

20-9

Program Control Instructions

OB1
FBXx FCy
MCRA
MCRA
MCRA
MCRD
Call FBx MCRD
BEU
MCRA

BEU

Operations not dependent on the MCR bit

i

Operations dependent on the MCR bit

BEU BEU is an STL instruction.
You will find more details in the Reference Manual 1102/

Figure 20-5 Activating and Deactivating an MCR Area

The operations programmed between MCRA and MCRD depend on the
signal state of the MCR bit. Operations programmed outside an
MCRA-MCRD sequence do not depend on the signal state of the MCR bit. If
an MCRD instruction is missing, the operations programmed between the
instructions MCRA and BEU depend on the MCR bit. (BEU is an STL
instruction. You will find more information iManual/232/)

Ladder Logic (LAD) for S7-300 and S7-400
20-10 C79000-G7076-C504-02

Program Control Instructions

(MCRA)
10.0
|| (MCR<)
10.3 Q4.0

| CsD

10.4 Q4.1

|| C D

(MCR>)

(MCRD)

The instruction —(MCRA) activates the function MCR up to the next MCRD. The instructions
between —(MCR<) and —(MCR>) are processed dependent on the MA bit (here |1 0.0):

* |f the signal state of input | 0.0 = 1, the following conditions can exist:
— Output Q 4.0 is set to 1 if the signal state of input 1 0.3 is 1.
— Output Q 4.0 remains unchanged if the signal state of input 1 0.3 is 0.
— The signal state of input | 0.4 is assigned to output Q 4.1.
* |[f the signal state of input | 0.0 = 0, the following conditions exist:
— Output Q 4.0 remains unchanged regardless of the signal state of input | 0.3.
— Output Q 4.1 is 0 regardless of the signal state of input | 0.4.

Status Word Bits

BR CC1 CCO OV 0OS OR STA RLO
Write - - - - - - - -

S

Figure 20-6 Master Control Relay (Activate and Deactivate)

You must program the dependency of the functions (FCs) and function blocks
(FBs) in the blocks by yourself. If this function or function block is called

from an MCRA/MCRD sequence, not all instructions within this sequence

are automatically dependent on the MCR bit. To achieve this, use the
instruction MCRA of the block called.

i’i Warning
Risk of personal injury and danger to equipment:

Never use the instruction MCR as an EMERGENCY OFF or safety device
for personnel.

MCR is not a substitute for a hardwired master control relay.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 20-11

Program Control Instructions

20.6 Master Control Relay On/Off

MCR On The Master Control Relay On (MCRK) instruction triggers an operation that
pushes the RLO to the MCR stack and opens an MCR zone. The instructions
shown in Table 20-4 are influenced by the RLO that is pushed to the RLO
stack when the MCR zone is opened. The MCR stack works like a LIFO
(Last In, First Out) buffer. Only eight entries are possible. If the stack is
already full, the Master Control Relay On instruction produces an MCR stack
fault (MCRF).

Table 20-8 Master Control Relay On Element

LAD Element Parameter | Data Type | Memory Area Description
—CMCRD None - - Opens an MCR zone
MCR Off The Master Control Relay Off (MCR>) instruction closes the MCR zone that

was opened last. The instruction does this by removing the RLO entry from
the MCR stack. The RLO was pushed there by the Master Control Relay On
instruction. The entry released at the other end of the LIFO (Last In, First
Out) MCR stack is set to 1. If the stack is already empty, the Master Control
Relay Off instruction produces an MCR stack fault (MCRF).

Table 20-9 Master Control Relay Off Element

LAD Element Parameter | Data Type | Memory Area Description
: Closes the MCR zone that was
MCR> None B B opened last

The MCR is controlled by a stack which is one bit wide and eight entries
deep (see Figure 20-7). The MCR is activated until all eight entries in the
stack are equal to 1. The instruction —(MCR<) copies the RLO to the MCR
stack. The instruction —(MCR>) removes the last entry from the stack and
sets the released stack address to 1. If an error occurs — e.qg. if more than
eight —(MCR>) instructions follow one another, or you attempt to execute
the instruction —(MCR>) when the stack is empty — this error activates the
MCRF error message. The monitoring of the MCR stack follows the stack
pointer (MSP: 0 = empty, 1 = one entry, 2 = two entries, ..., 8 = eight entries).

Ladder Logic (LAD) for S7-300 and S7-400
20-12 C79000-G7076-C504-02

Program Control Instructions

Nesting the

Instructions

(MCR<) and
(MCR>)

RLO Pushed bit
.

RLO
RLO
RLO

MSP —

o N o O b~ WDN P

Pushed bit 1

Tt
MCRA 1 0 MCRD

MSP = MCR stack pointer

MA = Bit for controlling MCR-dependency

Figure 20-7 Master Control Relay Stack

The instructions —(MCR<) and —(MCR>) must always be used in pairs
within your program.

The instruction —(MCR<) takes over the signal state of the RLO and copies
it to the MCR bit.

The instruction —(MCR>) sets the MCR bit absolutely to 1. Because of this
characteristic, every other instruction between the instructions —(MCRA)
and —(MCRD) operates independent of the MCR bit (for information on
—(MCRA) and —(MCRD), see above).

You can nest the instructions —(MCR<) and —(MCR>). The maximum
nesting depth is eight, i.e. you can write a maximum of eight —(MCR<)
instructions one after the other before inserting an —(MCR>) instruction.
You must program an equal number of —(MCR<) and —(MCR>)
instructions.

If the —(MCRK<) instructions are nested, the MCR bit of the lower nesting
level is formed. The —(MCRK<) instruction then links the current RLO with
the current MCR bit in accordance with the AND truth table.

When an —(MCR>) instruction finishes a nesting level, it fetches the MCR
bit from the next higher level.

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

20-13

Program Control Instructions

(MCRA)

(MCR <)

(MCR <)
Q4.0

CsD

(MCR>)
Q4.1

C D

(MCR>)

of input 1 0.3.

(MCRD)

When the MCRA instruction activates the MCR function, you can create up to eight nested MCR
zones. In the example, there are two MCR zones. The first MCR> instruction works together with the
second MCR< instruction. All instructions between the second set of MCR brackets (MCR<MCR>)
belong to the second MCR zone. The operations are executed as follows:

If the signal state of input | 0.0 = 1, the signal state of input | 0.4 is assigned to output Q 4.1.
If the signal state of input | 0.0 = 0, the signal state of output Q 4.1 is 0 regardless of
the signal state of input | 0.4. Output Q 4.0 remains unchanged regardless of the signal state

* |If the signal state of input 1 0.0 and 1 0.1 = 1, output Q 4.0 is set to 1 if the signal state
of input 1 0.3 is 1 and output Q 4.1 = input | 0.4.

* |f the signal state of input | 0.1 = 0, output Q 4.0 remains unchanged regardless of
the signal state of input | 0.3 and input | 0.0.

Status Word Bits

BR CCl1 CcC
Write - - -

0

OR
0

RLO

°4

Figure 20-8 Master Control Relay Off

20-14

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Appendix

Alphabetical Listing of
Instructions

Programming Examples

Number Representation

References

O O W >

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Alphabetical Listing of Instructions

Chapter Overview Section Description Page
Al Listing with International Names A-2
A2 Listing with International Names and SIMATIC Equivalefts @
A3 Listing with SIMATIC Names A9
A4 Listing with SIMATIC Names and International Equivalents [A-12]
A5 I';listing with International Short Names and SIMATIC Shprt [A-16]
ames

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 A-1

Alphabetical Listing of Instructions

A.1 Listing with International Names

Table A-1 provides an alphabetical listing of instructions with international
full names. Next to each full name is its international short name and a
reference to the page on which the instruction is explained in this manual.

Table A-1 Ladder Logic Instructions Arranged Alphabetically by International Name, with Short Names
Full Name Short Name Page No.

Add Double Integer ADD_DI 11-3
Add Integer ADD_|I 11-2
Add Real ADD_R 12-3
Address Negative Edge Detection NEG 8-22
Address Positive Edge Detection POS 8-21
Assign a Value MOVE 14-2
BCD to Double Integer BCD_DI 14-7
BCD to Integer BCD_I 14-4
Call FB from Box CALL_FB 20-4
Call FC from Box CALL_FC 20-4
Call FC SFC from Coil (without parameters) ——(CALL) 20-2
Call System FB from Box CALL_SFB 20-4
Call System FC from Box CALL_SFC 20-4
Ceiling CEIL 14-17
Compare Double Integer (>, <, ==, <>, <=, >=) CMP>=D 13-3
Compare Integer (>, <, ==, <>, <=, >=) CMP>=| 13-2
Compare Real (>, <, ==, <>, <=, >2) CMP>=R 135
Divide Double Integer DIV_DI 11-9
Divide Integer DIV_I 11-8
Divide Real DIV_R 12-6
Double Integer to BCD DI_BCD 14-8
Double Integer to Real DI_R 14-9
Down Counter S CD 10-7
Down Counter Coil —(CD) 8-13
Exception Bit BR Memory BR —| |— 19-3
Exception Bit Overflow oV — |— 19-7
Exception Bit Overflow Stored oS —| |— 19-9
Exception Bit Unordered uo —| |— 19-6
Extended Pulse S5 Timer S PEXT 9-7

Extended Pulse Timer Coll —(SE) 8-15
Floor FLOOR 14-18
Integer to BCD I_BCD 14-5
Integer to Double Integer |_DI 14-6
Invert Power Flow —| NOT |— 8-7

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Alphabetical Listing of Instructions

Table A-1 Ladder Logic Instructions Arranged Alphabetically by International Name, with Short Names, cont.
Full Name Short Name Page No.

Jump-If-Not ——(JMPN) 18-5
Jump —(JIMP) 18-3
Master Control Relay Activate —(MCRA) 20-9
Master Control Relay Deactivate ——(MCRD) 20-9
Master Control Relay Off —(MCR>) 20-12
Master Control Relay On —(MCR<) 20-12
Midline Output —#)— 8-6

Multiply Double Integer MUL_DI 11-7
Multiply Integer MUL_I 11-6
Multiply Real MUL_R 12-5
Negate Real Number NEG_R 14-14
Negated Exception Bit BR Memory BR —|/|— 19-3
Negated Exception Bit Overflow oV —|/|— 19-7
Negated Exception Bit Overflow Stored 0S —|/l— 19-9
Negated Exception Bit Unordered Uo —|/|— 19-6
Negated Result Bit Equal O ==0 —|/|— 19-4
Negated Result Bit Greater Equal 0 >=0 —|/|— 19-4
Negated Result Bit Greater Than 0 >0 —|/|— 19-4
Negated Result Bit Less Equal 0 <=0 —|/|— 19-4
Negated Result Bit Less Than 0 <0 —|/|— 19-4
Negated Result Bit Not Equal 0 <>0 —|/|— 19-4
Negative RLO Edge Detection —(N)— 8-20
Normally Closed Contact (Address) —|— 8-4

Normally Open Contact (Address) — — 8-3

Off-Delay S5 Timer S _OFFDT 9-13
Off-Delay Timer Coil —(SF) 8-18
On-Delay S5 Timer S ODT 9-9

On-Delay Timer Call —(SD) 8-16
ONEs Complement Double Integer INV_DI 14-11
ONEs Complement Integer INV_I 14-10
Open Data Block: DB or DI —(OPN) 17-2
Output Coill —() 8-5

Positive RLO Edge Detection —(P)— 8-19
Pulse S5 Timer S PULSE 9-5

Pulse Timer Coil —(SP) 8-14
Reset Coil —(R) 8-10
Reset-Set Flipflop RS 8-24
Result Bit Equal O =0 —| |— 19-4
Result Bit Greater Equal 0 >=0 —| |— 19-4
Result Bit Greater Than 0 >0 —| |— 19-4

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Alphabetical Listing of Instructions

Table A-1 Ladder Logic Instructions Arranged Alphabetically by International Name, with Short Names, cont.
Full Name Short Name Page No.

Result Bit Less Equal 0 <=0 —| |— 19-4
Result Bit Less Than 0 <0 —| |— 19-4
Result Bit Not Equal 0 <>0 —| |— 19-4
Retentive On-Delay S5 Timer S ODTS 9-11
Retentive On-Delay Timer Coil —(SS) 8-17
Return —(RET) 20-7
Return Fraction Double Integer MOD 11-10
Rotate Left Double Word ROL_DW 16-10
Rotate Right Double Word ROR_DW 16-12
Round to Double Integer ROUND 14-15
Save RLO to BR Memory —(SAVE) 8-8

Set Caoll —(S) 8-9

Set Counter Value —(SC) 8-11
Set-Reset Flipflop SR 8-23
Shift Left Double Word SHL_DW 16-4
Shift Left Word SHL_W 16-2
Shift Right Double Integer SHR_DI 16-9
Shift Right Double Word SHR_DW 16-6
Shift Right Integer SHR_I 16-7
Shift Right Word SHR_W 16-5
Subtract Double Integer SUB_DI 11-5
Subtract Integer SUB_I 11-4
Subtract Real SUB_R 12-4
Truncate Double Integer Part TRUNC 14-16
TWOs Complement Double Integer NEG_DI 14-13
TWOs Complement Integer NEG_| 14-12
Up Counter S CU 10-5
Up Counter Caoill —(CU) 8-12
Up-Down Counter S_CUD 10-3
(Word) And Double Word WAND_DW 15-4
(Word) And Word WAND_W 15-3
(Word) Exclusive Or Double Word WXOR_DW 15-8
(Word) Exclusive Or Word WXOR_W 15-7
(Word) Or Double Word WOR_DW 15-6
(Word) Or Word WOR_W 15-5

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Alphabetical Listing of Instructions

A.2 Listing with International Names and SIMATIC Equivalents

Table A-2 provides an alphabetical listing of instructions with international

full names. Next to each full name is its SIMATIC equivalent and a reference

to the page on which the instruction is explained in this manual.

Table A-2 Ladder Logic Instructions Arranged Alphabetically by International Name,
with SIMATIC Equivalents
International Name SIMATIC Name Page No.

Add Double Integer Ganze Zahlen addieren (32 Bit) 11-3
Add Integer Ganze Zahlen addieren (16 Bit) 11-2
Add Real Realzahlen addieren 12-3
Address Negative Edge Detection Signalflanke 1.0 abfragen 8-22
Address Positive Edge Detection Signalflanke 0- 1 abfragen 8-21
Assign a Value Wert Ubertragen 14-2
BCD to Double Integer BCD-Zahl in Ganzzahl (32 Bit) wandeln 14-7
BCD to Integer BCD-Zahl in Ganzzahl (16 Bit) wandeln 14-4
Call FB from Box FB als Box aufrufen 20-4
Call FC from Box FC als Box aufrufen 20-4
Call FC SFC from Caoil (without parameters) FC/SFC aufrufen ohne Parameter 20-2
Call System FB from Box System FB als Box aufrufen 20-4
Call System FC from Box System FC als Box aufrufen 20-4
Ceiling Aus Realzahl néchsththere Ganzzahl erzeygen 14-17
Compare Double Integer Ganze Zahlen vergleichen (32 Bit) 13-3
>, <, =3, <>, <=, >5)
Compare Integer (>, <, ==, <>, <=, >=) Ganze Zahlen vergleichen (16 Bit) 13-2
Compare Real (>, <, ==, <>, <=, >2) Realzahlen vergleichen 13-5
Divide Double Integer Ganze Zahlen dividieren (32 Bit) 11-9
Divide Integer Ganze Zahlen dividieren (16 Bit) 11-8
Divide Real Realzahlen dividieren 12-6
Double Integer to BCD Ganzzahl (32 Bit) in BCD-Zahl wandeln 14-8
Double Integer to Real Ganzzahl (32 Bit) in Realzahl wandeln 14-9
Down Counter Abwaérts zéhlen 10-7
Down Counter Coil Abwartszéhlen 8-13
Exception Bit BR Memory Stdrungsbit BR-Register 19-3
Exception Bit Overflow Stérungsbit Uberlauf 19-7
Exception Bit Overflow Stored Storungsbit Uberlauf gespeichert 19-9
Exception Bit Unordered Stodrungsbit Ungiiltige Operation 19-6
Extended Pulse S5 Timer Zeit als verlangerten Impuls starten (SV) 9-7
Extended Pulse Timer Coill Zeit als verlangerten Impuls starten (SV) 8-15

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Alphabetical Listing of Instructions

erzeugen

Table A-2 Ladder Logic Instructions Arranged Alphabetically by International Name,
with SIMATIC Equivalents, cont.
International Name SIMATIC Name Page No.
Floor Aus Realzahl néchstniedere Ganzzahl 14-18
erzeugen

Integer to BCD Ganzzahl (16 Bit) in BCD-Zahl wandeln 14-5
Integer to Double Integer 16-bit-Ganzzahl in 32-bit-Ganzzahl wandel 14-6
Invert Power Flow Verknipfungsergebnis invertieren 8-7

Jump-If-Not Springen wenn 0 18-5
Jump Springen wenn 1 18-3
Master Control Relay Activate Master Control Relais Anfang 20-9
Master Control Relay Deactivate Master Control Relais Ende 20-9
Master Control Relay Off Master Control Relais ausschalten 20-12
Master Control Relay On Master Control Relais einschalten 20-12
Midline Output Konnektor 8-6

Multiply Double Integer Ganze Zahlen multiplizieren (32 Bit) 11-7
Multiply Integer Ganze Zahlen multiplizieren (16 Bit) 11-6
Multiply Real Realzahlen multiplizieren 12-5
Negate Real Number Vorzeichen einer Realzahl wechseln 14-14
Negated Exception Bit BR Memory Negiertes Stérungsbit BR-Register 19-3
Negated Exception Bit Overflow Negiertes Storungsbit Uberlauf 19-7
Negated Exception Bit Overflow Stored Negiertes Storungsbit Uberlauf gespeicher 19-9
Negated Exception Bit Unordered Negiertes Stdrungsbit Ungiiltige Operation 19-6
Negated Result Bit Equal 0 Negiertes Ergebnisbit bei gleich 0 19-4
Negated Result Bit Greater Equal 0 Negiertes Ergebnisbit bei groRer gleich 0 19-4
Negated Result Bit Greater Than 0 Negiertes Ergebnisbit bei gréRer als 0 19-4
Negated Result Bit Less Equal 0 Negiertes Ergebnisbit bei kleiner gleich 0 19-4
Negated Result Bit Less Than 0 Negiertes Ergebnisbit bei kleiner 0 19-4
Negated Result Bit Not Equal 0 Negiertes Ergebnisbit bei ungleich 0 19-4
Negative RLO Edge Detection Flanke 1- 0 abfragen 8-20
Normally Closed Contact (Address) Offnerkontakt 8-4

Normally Open Contact (Address) SchlielRerkontakt 8-3

Off-Delay S5 Timer Zeit als Ausschaltverzdgerung starten (SA) 9-13
Off-Delay Timer Caoil Zeit als Ausschaltverzdgerung starten (SA) 8-18
On-Delay S5 Timer Zeit als Einschaltverzégerung starten (SE) 9-9

On-Delay Timer Caoll Zeit als Einschaltverzdgerung starten (SE) 8-16
ONEs Complement Double Integer ler Komplement zu Ganzzahl (32 Bit) 14-11

erzeugen
ONEs Complement Integer ler Komplement zu Ganzzahl (16 Bit) 14-10

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Alphabetical Listing of Instructions

Table A-2 Ladder Logic Instructions Arranged Alphabetically by International Name,
with SIMATIC Equivalents, cont.
International Name SIMATIC Name Page No.

Open Data Block: DB or DI Datenbaustein 6ffnen 17-2
Output Caoill Relaisspule, Ausgang 8-5

Positive RLO Edge Detection Flanke 0- 1 abfragen 8-19
Pulse S5 Timer Zeit als Impuls starten (SI) 9-5

Pulse Timer Coil Zeit als Impuls starten (SI) 8-14
Reset Coil Ausgang riicksetzen 8-10
Reset-Set Flipflop Flipflop rlicksetzen setzen 8-24
Result Bit Equal 0 Ergebnisbit bei gleich 0 19-4
Result Bit Greater Equal 0 Ergebnisbit bei groRer gleich 0 19-4
Result Bit Greater Than 0 Ergebnisbit bei gréRer als 0 19-4
Result Bit Less Equal 0 Ergebnisbit bei kleiner gleich 0 19-4
Result Bit Less Than 0 Ergebnisbit bei kleiner 0 19-4
Result Bit Not Equal 0 Ergebnisbit bei ungleich 0 19-4
Retentive On-Delay S5 Timer Zeit als speich. Einschaltverzégerung starteén 9-11

(SS)
Retentive On-Delay Timer Coil Zeit als speich. Einschaltverzogerung start¢n 8-17
(SS)

Return Springe zuriick 20-7
Return Fraction Double Integer Divisionsrest gewinnen (32 Bit) 11-10
Rotate Left Double Word 32 Bit linksrotieren 16-10
Rotate Right Double Word 32 Bit rechtsrotieren 16-12
Round to Double Integer Zahl runden 14-15
Save RLO to BR Memory Verkniipfungsergebnis ins BR-Register laden 8-8

Set Call Ausgang setzen 8-9

Set Counter Value Zahleranfangswert setzen 8-11
Set-Reset Flipflop Flipflop setzen ricksetzen 8-23
Shift Left Double Word 32 Bit links schieben 16-4
Shift Left Word 16 Bit links schieben 16-2
Shift Right Double Integer Ganzzahl (32 Bit) rechtsschieben 16-9
Shift Right Double Word 32 Bit rechts schieben 16-6
Shift Right Integer Ganzzahl (16 Bit) rechtsschieben 16-7
Shift Right Word 16 Bit rechts schieben 16-5
Subtract Double Integer Ganze Zahlen subtrahieren (32 Bit) 11-5
Subtract Integer Ganze Zahlen subtrahieren (16 Bit) 11-4
Subtract Real Realzahlen subtrahieren 12-4
Truncate Double Integer Part Ganze Zahl erzeugen 14-16

C79000-07076.CR0g 02 o 00 A7

Alphabetical Listing of Instructions

Table A-2 Ladder Logic Instructions Arranged Alphabetically by International Name,
with SIMATIC Equivalents, cont.
International Name SIMATIC Name Page No.
TWOs Complement Double Integer 2er Komplement zu Ganzzahl (32 Bit) 14-13
erzeugen
TWOs Complement Integer 2er Komplement zu Ganzzahl (16 Bit) 14-12
erzeugen
Up Counter Aufwarts zahlen 10-5
Up Counter Caoll Aufwartszéhlen 8-12
Up-Down Counter Aufwarts/abwarts zahlen 10-3
(Word) And Double Word 32 Bit UND verkniipfen 15-4
(Word) And Word 16 Bit UND verknipfen 15-3
(Word) Exclusive Or Double Word 32 Bit Exclusiv ODER verknupfen 15-8
(Word) Exclusive Or Word 16 Bit Exclusiv ODER verknipfen 15-7
(Word) Or Double Word 32 Bit ODER verknupfen 15-6
(Word) Or Word 16 Bit ODER verknipfen 15-5
Ladder Logic (LAD) for S7-300 and S7-400
A-8 C79000-G7076-C504-02

Alphabetical Listing of Instructions

A.3 Listing with SIMATIC Names

Table A-3 provides an alphabetical listing of instructions with SIMATIC full
names. Next to each full name is its international short name and a reference
to the page on which the instruction is explained in this manual.

Table A-3 Ladder Logic Instructions Arranged Alphabetically by SIMATIC Name, with Short Names

SIMATIC Name Short Name Page No.

ler Komplement zu Ganzzahl (16 Bit) erzeugen INV_I 14-10
ler Komplement zu Ganzzahl (32 Bit) erzeugen INV_DI 14-11
2er Komplement zu Ganzzahl (16 Bit) erzeugen NEG_|I 14-12
2er Komplement zu Ganzzahl (32 Bit) erzeugen NEG_DI 14-13
16 Bit Exclusiv ODER verknipfen WXOR_W 15-7
16-bit-Ganzzahl in 32-bit-Ganzzahl wandeln I_DlI 14-6
Ganzzahl (16 Bit) in BCD-Zahl wandeln I_BCD 14-5
Ganzzahl (16 Bit) rechtsschieben SHR_| 16-7
16 Bit links schieben SHL W 16-2
16 Bit ODER verknupfen WOR_W 15-5
16 Bit rechts schieben SHR_W 16-5
16 Bit UND verknipfen WAND_W 15-3
32 Bit Exclusiv ODER verknupfen WXOR_DW 15-8
Ganzzahl (32 Bit) in BCD-Zahl wandeln DI_BCD 14-8
Ganzzahl (32 Bit) in Realzahl wandeln DI_R 14-9
Ganzzahl (32 Bit) rechtsschieben SHR_DI 16-9
32 Bit linksrotieren ROL_DW 16-10
32 Bit links schieben SHL_DW 16-4
32 Bit ODER verknupfen WOR_DW 15-6
32 Bit rechtsrotieren ROR_DW 16-12
32 Bit rechts schieben SHR_DW 16-4
32 Bit UND verknupfen WAND_DW 15-4
Abwaérts zéhlen S _CD 10-7
Abwartszahlen ——(CD) 8-13
Aufwarts/abwarts zéhlen S CuD 10-3
Aufwarts zahlen S CU 10-5
Aufwartszéhlen —(CU) 8-12
Ausgang riicksetzen —(R) 8-10
Ausgang setzen —(S) 8-9

Aus Realzahl nédchsthéhere Ganzzahl erzeugen CEIL 14-17
Aus Realzahl nachstniedere Ganzzahl erzeugen FLOOR 14-18
BCD-Zahl in Ganzzahl (16 Bit) wandeln BCD_|I 14-4
BCD-Zahl in Ganzzahl (32 Bit) wandeln BCD_DI 14-7
Datenbaustein 6ffnen —(OPN) 17-2

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 A-9

Alphabetical Listing of Instructions

Table A-3 Ladder Logic Instructions Arranged Alphabetically by SIMATIC Name, with Short Names, cont.
SIMATIC Name Short Name Page No.

Divisionsrest gewinnen (32 Bit) MOD 11-10
Ergebnisbit bei gleich 0 =0 —| |— 19-4
Ergebnisbit bei groRer als 0 >0 —| |— 19-4
Ergebnisbit bei gréRer gleich 0 >=0 —| |— 19-4
Ergebnisbit bei kleiner 0 <0 —/ |— 19-4
Ergebnisbit bei kleiner gleich 0 <=0 —| |— 19-4
Ergebnisbit bei ungleich 0 <>0 —| |— 19-4
FB als Box aufrufen CALL_FB 20-4
FC als Box aufrufen CALL_FC 20-4
FC/SFC aufrufen ohne Parameter —(CALL) 20-2
Flanke 0- 1 abfragen —(P)— 8-19
Flanke 1- 0 abfragen —(N)— 8-20
Flipflop ricksetzen setzen RS 8-24
Flipflop setzen rucksetzen SR 8-23
Ganze Zahlen addieren (16 Bit) ADD_| 11-2
Ganze Zahlen addieren (32 Bit) ADD_DI 11-3
Ganze Zahlen dividieren (16 Bit) DIV_]I 11-8
Ganze Zahlen dividieren (32 Bit) DIV_DI 11-9
Ganze Zahlen multiplizieren (16 Bit) MUL_I 11-6
Ganze Zahlen multiplizieren (32 Bit) MUL_DI 11-7
Ganze Zahlen subtrahieren (16 Bit) SUB_I 11-4
Ganze Zahlen subtrahieren (32 Bit) SUB_DI 11-5
Ganze Zahlen vergleichen (16 Bit) CMP_I_>= 13-2
Ganze Zahlen vergleichen (32 Bit) CMP_D_>= 13-3
Ganze Zahl erzeugen TRUNC 14-16
Konnektor —(#H)— 8-6

Master Control Relais Anfang ——(MCRA) 20-9
Master Control Relais ausschalten —(MCR>) 20-12
Master Control Relais einschalten —(MCRX) 20-12
Master Control Relais Ende ——(MCRD) 20-9
Negiertes Ergebnisbit bei gleich 0 =0 —|/|— 19-4
Negiertes Ergebnisbit bei groRer als 0 >0 —|/|— 19-4
Negiertes Ergebnisbit bei gréRer gleich 0 >=0 —|/|— 19-4
Negiertes Ergebnisbit bei kleiner gleich 0 <=0 —|/|— 19-4
Negiertes Ergebnisbit bei kleiner 0 <0 —|/|— 19-4
Negiertes Ergebnisbit bei ungleich 0 <>0 —|/|— 19-4
Negiertes Storungsbit BR-Register BR —|/|— 19-3
Negiertes Stérungsbit Uberlauf oV —|/|— 19-7
Negiertes Storungsbit Uberlauf gespeichert oS —|/|— 19-9
Negiertes Stdrungsbit Ungiiltige Operation Uo —|/|— 19-6

A-10

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Alphabetical Listing of Instructions

Table A-3 Ladder Logic Instructions Arranged Alphabetically by SIMATIC Name, with Short Names, cont.
SIMATIC Name Short Name Page No.

Offnerkontakt —l— 8-4

Realzahlen addieren ADD_R 12-3
Realzahlen dividieren DIV_R 12-6
Realzahlen multiplizieren MUL_R 12-5
Realzahlen subtrahieren SUB_R 12-4
Realzahlen vergleichen CMP_R_>= 13-5
Relaisspule, Ausgang —() 8-5

SchlieRerkontakt — |— 8-3

Signalflanke -1 abfragen POS 8-21
Signalflanke 1. 0 abfragen NEG 8-22
Springen wenn 0 —(JIMPN) 18-5
Springen wenn 1 —(JIMP) 18-3
Springe zurilick —(RET) 20-7
Stdrungsbit BR-Register BR —| |— 19-3
Stérungsbit Uberlauf oV —| |— 19-7
Stérungsbit Uberlauf gespeichert oS —| |— 19-9
Stdrungsbit Ungultige Operation uo —| |— 19-6
System FB als Box aufrufen CALL_SFB 20-4
System FC als Box aufrufen CALL_SFC 20-4
Verknipfungsergebnis ins BR-Register laden —(SAVE) 8-8

Verkniipfungsergebnis invertieren —| NOT |— 8-7

Vorzeichen einer Realzahl wechseln NEG_R 14-14
Wert Uibertragen MOVE 14-2
Zahl runden ROUND 14-15
Zahleranfangswert setzen —(SC) 8-11
Zeit als Ausschaltverzdgerung starten (SA) S _OFFDT 9-13
Zeit als Ausschaltverzdgerung starten (SA) —(SF) 8-18
Zeit als Einschaltverzégerung starten (SE) S ODT 9-9

Zeit als Einschaltverzégerung starten (SE) —(SD) 8-16
Zeit als Impuls starten (SI) S _PULSE 9-5

Zeit als Impuls starten (SI) —(SP) 8-14
Zeit als speich. Einschaltverzdgerung starten (SS) S _ODTS 9-11
Zeit als speich. Einschaltverzdégerung starten (SS) —(SS) 8-17
Zeit als verlangerten Impuls starten (SV) S _PEXT 9-7

Zeit als verlangerten Impuls starten (SV) —(SE) 8-15

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

A-11

Alphabetical Listing of Instructions

A.4 Listing with SIMATIC Names and International Equivalents

Table A-4 provides an alphabetical listing of instructions with SIMATIC full
names. Next to each full name is its international equivalent and a reference
to the page on which the instruction is explained in this manual.

Table A-4 Ladder Logic Instructions Arranged Alphabetically by SIMATIC Name, with International

Equivalents
SIMATIC Name International Name Page No.

ler Komplement zu Ganzzahl (16 Bit) ONEs Complement Integer 14-10
erzeugen

ler Komplement zu Ganzzahl (32 Bit) ONEs Complement Double Integer 14-11
erzeugen

2er Komplement zu Ganzzahl (16 Bit) TWOs Complement Integer 14-12
erzeugen

2er Komplement zu Ganzzahl (32 Bit) TWOs Complement Double Integer 14-13
erzeugen

16 Bit Exclusiv ODER verknipfen (Word) Exclusive Or Word 15-7
16-bit-Ganzzahl in 32-bit-Ganzzahl wandelp Integer to Double Integer 14-6
Ganzzahl (16 Bit) in BCD-Zahl wandeln Integer to BCD 14-5
Ganzzahl (16 Bit) rechtsschieben Shift Right Integer 16-7
16 Bit links schieben Shift Left Word 16-2
16 Bit ODER verknupfen (Word) Or Word 15-5
16 Bit rechts schieben Shift Right Word 16-5
16 Bit UND verknupfen (Word) And Word 15-3
32 Bit Exclusiv ODER verknipfen (Word) Exclusive Or Double Word 15-8
Ganzzahl (32 Bit) in BCD-Zahl wandeln Double Integer to BCD 14-8
Ganzzahl (32 Bit) in Realzahl wandeln Double Integer to Real 14-9
Ganzzahl (32 Bit) rechtsschieben Shift Right Double Integer 16-9
32 Bit linksrotieren Rotate Left Double Word 16-10
32 Bit links schieben Shift Left Double Word 16-4
32 Bit ODER verknipfen (Word) Or Double Word 15-6
32 Bit rechtsrotieren Rotate Right Double Word 16-12
32 Bit rechts schieben Shift Right Double Word 16-4
32 Bit UND verknupfen (Word) And Double Word 15-4
Abwérts zéhlen Down Counter 10-7
Abwartszéhlen Down Counter Coll 8-13
Aufwarts/abwarts zahlen Up-Down Counter 10-3
Aufwarts z&hlen Up Counter 10-5
Aufwartszéhlen Up Counter Coil 8-12
Ausgang riicksetzen Reset Coil 8-10
Ausgang setzen Set Coll 8-9

Ladder Logic (LAD) for S7-300 and S7-400
A-12 C79000-G7076-C504-02

Alphabetical Listing of Instructions

Table A-4 Ladder Logic Instructions Arranged Alphabetically by SIMATIC Name, with International
Equivalents, cont.
SIMATIC Name International Name Page No.
Aus Realzahl néchsthdhere Ganzzahl erzeygedeiling 14-17
Aus Realzahl nachstniedere Ganzzahl Floor 14-18
erzeugen
BCD-Zahl in Ganzzahl (16 Bit) wandeln BCD to Integer 14-4
BCD-Zahl in Ganzzahl (32 Bit) wandeln BCD to Double Integer 14-7
Datenbaustein 6ffnen Open Data Block: DB or DI 17-2
Divisionsrest gewinnen (32 Bit) Return Fraction Double Integer 11-10
Ergebnisbit bei gleich 0 Result Bit Equal 0 19-4
Ergebnisbit bei groRer als 0 Result Bit Greater Than 0 19-4
Ergebnisbit bei gréRer gleich 0 Result Bit Greater Equal 0 19-4
Ergebnisbit bei kleiner 0 Result Bit Less Than 0 19-4
Ergebnisbit bei kleiner gleich 0 Result Bit Less Equal 0 19-4
Ergebnisbit bei ungleich 0 Result Bit Not Equal 0 19-4
FB als Box aufrufen Call FB from Box 20-4
FC als Box aufrufen Call FC from Box 20-4
FC/SFC aufrufen ohne Parameter Call FC SFC from Coil (without parameters 20-2
Flanke 0- 1 abfragen Positive RLO Edge Detection 8-19
Flanke 1- 0 abfragen Negative RLO Edge Detection 8-20
Flipflop riicksetzen setzen Reset-Set Flipflop 8-24
Flipflop setzen riicksetzen Set-Reset Flipflop 8-23
Ganze Zahlen addieren (16 Bit) Add Integer 11-2
Ganze Zahlen addieren (32 Bit) Add Double Integer 11-3
Ganze Zahlen dividieren (16 Bit) Divide Integer 11-8
Ganze Zahlen dividieren (32 Bit) Divide Double Integer 11-9
Ganze Zahlen multiplizieren (16 Bit) Multiply Integer 11-6
Ganze Zahlen multiplizieren (32 Bit) Multiply Double Integer 11-7
Ganze Zahlen subtrahieren (16 Bit) Subtract Integer 11-4
Ganze Zahlen subtrahieren (32 Bit) Subtract Double Integer 11-5
Ganze Zahlen vergleichen (16 Bit) Compare Integer (>, <, ==, <>, <=, >) 13-2
Ganze Zahlen vergleichen (32 Bit) Compare Double Integer 13-3
(>, <, ==, <3, <=, >5)

Ganze Zahl erzeugen Truncate Double Integer Part 14-16
Konnektor Midline Output 8-6
Master Control Relais Anfang Master Control Relay Activate 20-9
Master Control Relais ausschalten Master Control Relay Off 20-12
Master Control Relais einschalten Master Control Relay On 20-12
Master Control Relais Ende Master Control Relay Deactivate 20-9

C79000-07076.CR0g 02 o 00 A-13

Alphabetical Listing of Instructions

Table A-4 Ladder Logic Instructions Arranged Alphabetically by SIMATIC Name, with International
Equivalents, cont.

SIMATIC Name International Name Page No.
Negiertes Ergebnisbit bei gleich 0 Negated Result Bit Equal 0 19-4
Negiertes Ergebnisbit bei grof3er als 0 Negated Result Bit Greater Than 0 19-4
Negiertes Ergebnisbit bei gréRer gleich 0 Negated Result Bit Greater Eqaul 0 19-4
Negiertes Ergebnisbit bei kleiner gleich 0 Negated Result Bit Less Equal 0 19-4
Negiertes Ergebnisbit bei kleiner 0 Negated Result Bit Less Than 0 19-4
Negiertes Ergebnisbit bei ungleich 0 Negated Result Bit Not Equal 0 19-4
Negiertes Stérungsbit BR-Register Negated Exception Bit BR Memory 19-3
Negiertes Storungsbit Uberlauf Negated Exception Bit Overflow 19-7
Negiertes Storungsbit Uberlauf gespeicher{ Negated Exception Bit Overflow Stored 19-9
Negiertes Stérungsbit Ungliltige Operation| Negated Exception Bit Unordered 19-6
Offnerkontakt Normally Closed Contact (Address) 8-4
Realzahlen addieren Add Real 12-3
Realzahlen dividieren Divide Real 12-6
Realzahlen multiplizieren Multiply Real 12-5
Realzahlen subtrahieren Subtract Real 12-4
Realzahlen vergleichen Compare Real (>, <, ==, <>, <=, >3) 13-5
Relaisspule, Ausgang Output Coill 8-5
SchlieRerkontakt Normally Open Contact (Address) 8-3
Signalflanke G- 1 abfragen Address Positive Edge Detection 8-21
Signalflanke 1. 0 abfragen Address Negative Edge Detection 8-22
Springe wenn 0 Jump-If-Not 18-5
Springen wenn 1 Jump 18-3
Springe zurlick Return 20-7
Stdrungsbit BR-Register Exception Bit BR Memory 19-3
Stérungsbit Uberlauf Exception Bit Overflow 19-7
Storungsbit Uberlauf gespeichert Exception Bit Overflow Stored 19-9
Storungshit Ungultige Operation Exception Bit Unordered 19-6
System FB als Box aufrufen Call System FB from Box 20-4
System FC als Box aufrufen Call System FC from Box 20-4
Verknlpfungsergebnis ins BR-Register laden Save RLO to BR Memory 8-8
Verkniipfungsergebnis invertieren Invert Power Flow 8-7

Vorzeichen einer Realzahl wechseln Negate Real Number 14-14
Wert Ubertragen Assign a Value 14-2

Zahl runden Round to Double Integer 14-15
Zahleranfangswert setzen Set Counter Value 8-11
Zeit als Ausschaltverzégerung starten (SA)| Off-Delay S5 Timer 9-13

A-14

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Alphabetical Listing of Instructions

Table A-4 Ladder Logic Instructions Arranged Alphabetically by SIMATIC Name, with International

Equivalents, cont.

SIMATIC Name International Name Page No.

Zeit als Ausschaltverzégerung starten (SA)| Off-Delay Timer Coil 8-18
Zeit als Einschaltverzégerung starten (SE)| On-Delay S5 Timer 9-9
Zeit als Einschaltverzégerung starten (SE)| On-Delay Timer Coil 8-16
Zeit als Impuls starten (SI) Pulse S5 Timer 9-5
Zeit als Impuls starten (SI) Pulse Timer Coil 8-14
Zeit als speich. Einschaltverzégerung starten Retentive On-Delay S5 Timer 9-11
(SS)

Zeit als speich. Einschaltverzogerung startén Retentive On-Delay Timer Coil 817
(SS)

Zeit als verlangerten Impuls starten (SV) Extended Pulse S5 Timer 9-7
Zeit als verlangerten Impuls starten (SV) Extended Pulse Timer Coil 8-15

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

A-15

Alphabetical Listing of Instructions

A.5 Listing with International Short Names and SIMATIC Short Names

Table A-5 provides a list of instructions which have both international and
SIMATIC short names. The table lists these instructions alphabetically
according to their international full names.

Table A-5 Ladder Logic Instructions Listed in This Manual with International Short Names and SIMATIC Short

Names
International Name International Short Name SIMATIC Short Name Page No.
Down Counter S CD Z_RUECK 10-7
Down Counter Coil ——(CD) —(ZR) 8-13
Exception Bit BR Memory BR —| |— BIE —| |— 19-3
Extended Pulse S5 Timer S PEXT S VIMP 9-7
Extended Pulse Timer Caoill —(SE) —(SV) 8-15
Off-Delay S5 Timer S _OFFDT S _AVERZ 9-13
Off-Delay Timer Coil —(SF) —(SA) 8-18
On-Delay S5 Timer S_ODT S_EVERZ 9-9
On-Delay Timer Coll —(SD) —(SE) 8-16
Open Data Block: DB or DI —(OPN) —(AUF) 17-2
Pulse S5 Timer S_PULSE S_IMPULS 9-5
Pulse Timer Coil —(SP) —(SI) 8-14
Retentive On-Delay S5 Timer S ODTS S _SEVERZ 9-11
Retentive On-Delay Timer Coil —(SS) —(SS) 8-17
Set Counter Value —(SC) —(S2) 8-11
Up Counter S CU Z VORW 10-5
Up Counter Caoill —(CU) —(2V) 8-12
Up-Down Counter S CUD ZAEHLER 10-3

Ladder Logic (LAD) for S7-300 and S7-400
A-16 C79000-G7076-C504-02

Programming Examples

Chapter Overview

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Section Description Page
B.1 Overview B-2
B.2 Bit Logic Instructions B-3
B.3 Timer Instructions B-7
B.4 Counter and Comparison Instructions [B-11]
B.5 Integer Math Instructions [B-13
B.6 Word Logic Instructions B-1

B-1

Programming Examples

B.1 Overview

Practical
Applications

Instructions Used

B-2

Each ladder logic instruction described in this manual triggers a specific
operation. When you combine these instructions into a program, you can
accomplish a wide variety of automation tasks. This chapter provides the
following examples of practical applications of the ladder logic instructions:

¢ Controlling a conveyor belt using bit logic instructions

e Detecting direction of movement on a conveyor belt using bit logic
instructions

¢ Generating a clock pulse using timer instructions
¢ Keeping track of storage space using counter and comparison instructions
e Solving a problem using integer math instructions

e Setting the length of time for heating an oven

The examples in this chapter use the following instructions:
e Add Integer (ADD_1I)

¢ Assign a Value (MOVE)

e Compare Integer (CMP_I>=)

e Compare Integer (CMP_I<=)

¢ Divide Integer (DIV_I)

¢ Down Counter Coil —(CD)

e Extended Pulse Timer Coil —(SE)—
e Jump-If-Not —(JIMPN)—

¢ Multiply Integer (MUL_I)

¢ Normally Closed Contact —| / |—

¢ Normally Open Contact —| |—

e OQutput Coil —()

¢ Positive RLO Edge Detection —(P)—
¢ Reset Coil —(R)

* Return —(RET)

e Set Coill —(S)

e Up Counter Coil —(CU)

¢ (Word) And Word (WAND_W)

¢ (Word) Or Word (WOR_W)

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Programming Examples

B.2 Bit Logic Instructions

Controlling a Figure B-1 shows a conveyor belt that can be activated electrically. There are

Conveyor Belt two push button switches at the beginning of the belt: S1 for START and S2
for STOP. There are also two push button switches at the end of the belt: S3
for START and S4 for STOP. It it possible to start or stop the belt from either
end. Also, sensor S5 stops the belt when an item on the belt reaches the end.

Symbolic You can write a program to control the conveyor belt shown in Figure B-1

Programming using symbols that represent the various components of the conveyor system.
If you choose this method, you need to make a symbol table to correlate the

symbols you choose with absolute values (see Table B-1). You define the
symbols in the symbol table (s&31/ User Manua).

Table B-1 Elements of Symbolic Programming for Conveyor Belt System
Absolute
System Component Address Symbol Symbol Table
Push Button Start Switch 1.1 S1 11.1 S1
Push Button Stop Switch 11.2 S2 112 S2
Push Button Start Switch 11.3 S3 11.3 S3
Push Button Stop Switch 11.4 S4 114 S4
Sensor 115 S5 115 S5
Motor Q4.0 MOTOR_ON |Q 4.0 MOTOR_ON
-
* é\ {s :§§ — 7= — Sensor S5
Xe)
S1| Q Start S3 | QQ Start
MOTOR_ON S2 | Q Stop S4 | QQ Stop

Figure B-1 Conveyor Belt System

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

B-3

Programming Examples

Absolute You can write a program to control the conveyor belt shown in Figure B-1

Programming using absolute values that represent the different components of the conveyor
system (see Table B-2). Figure B-2 shows a ladder logic program to control
the conveyor belt.

Table B-2 Elements of Absolute Programming for Conveyor Belt System
System Component Absolute Address
Push Button Start Switch 11.1
Push Button Stop Switch 11.2
Push Button Start Switch 11.3
Push Button Stop Switch 11.4
Sensor 115
Motor Q4.0

Network 1: Pressing either start switch turns the motor on.

Push Button Start Switch Motor
“S1” “MOTOR_ON”
11.1 Q4.0
N (s)

Push Button Start Switch
g3
11.3

Network 2: Pressing either stop switch or opening the normally closed contact at the end of the belt
turns the motor off.

Push Button Stop Switch Motor
“S2" “MOTOR_ON”
1.2 Q4.0
N (R)

Push Button Stop Switch
g
11.4

Sensor

uggn
115

1

Figure B-2 Ladder Logic for Controlling a Conveyor Belt

Ladder Logic (LAD) for S7-300 and S7-400
B-4 C79000-G7076-C504-02

Programming Examples

Detecting the
Direction of a
Conveyor Belt

Symbolic
Programming

Absolute
Programming

Figure B-3 shows a conveyor belt that is equipped with two photoelectric
barriers (PEB1 and PEB2) that are designed to detect the direction in which a
package is moving on the belt. Each photoelectric light barrier functions like
a normally open contact (see Secfion 8.2).

You can write a program to activate a direction display for the conveyor belt
system shown in Figure B-3 using symbols that represent the various
components of the conveyor system, including the photoelectric barriers that
detect direction. If you choose this method, you need to make a symbol table
to correlate the symbols you choose with absolute values (see Table B-3).
You define the symbols in the symbol table (seduiber Manual/23Y/).

Table B-3 Elements of Symbolic Programming for Detecting Direction
System Component AAZZ?LUSIE Symbol Symbol Table
Photo electric barrier 1 10.0 PEB1 10.0 PEB1
Photo electric barrier 2 10.1 PEB2 10.1 PEB2
Display for movement to right Q4.0 RIGHT Q4.0 RIGHT
Display for movement to left Q4.1 LEFT Q4.1 LEFT
Pulse memory bit 1 M 0.0 PMB1 M 0.0 PMB1
Pulse memory hit 2 M 0.1 PMB2 M 0.1 PMB2

You can write a program to activate the direction display for the conveyor
belt shown in Figure B-3 using absolute values that represent the
photoelectric barriers that detect direction (see Table B-4). Figure B-4 shows
a ladder logic program to control the direction display for the conveyor belt.

Q4.0 PEB2 PEBL - Qa1

\%H\%@%

Figure B-3 Conveyor Belt System with Photoelectric Light Barriers for Detecting Direction

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

B-5

Programming Examples

Table B-4 Elements of Absolute Programming for Detecting Direction

System Component Absolute Address
Photo electric barrier 1 10.0
Photo electric barrier 2 10.1
Display for movement to right Q4.0
Display for movement to left Q41
Pulse memory bit 1 M 0.0
Pulse memory bit 2 M 0.1

Network 1: If there is a transition in signal state from 0 to 1 (positive edge) at input | 0.0 and, at the
same time, the signal state at input | 0.1 is 0, then the package on the belt is moving to the left.

Photoelectric barrier 1~ Pulse memory bit1 Photoelectric barrier 2 Display for movement to left

“PEB1” “PMB1L” “PEB2” “LEFT”
10.0 M 0.0 10.1 Q41
|| (P 1 (s)

Network 2: If there is a transition in signal state from 0 to 1 (positive edge) at input | 0.1 and, at the
same time, the signal state at input | 0.0 is 0, then the package on the belt is moving to the right. If one
of the photoelectric light barriers is broken, this means that there is a package between the barriers.

Photoelectric barrier 2 Pulse memory bit 2 Photoelectric barrier 1 Display for movement to right
“PEB2” “PMB2” “PEB1” “RIGHT”
10.1 M 0.1 10.0 Q4.0

| | (P 4 (s)

Network 3: If neither photoelectric barrier is broken, then there is no package between the barriers.
The direction pointer shuts off.

Photoelectric barrier 1 Photoelectric barrier 2 Display for movement to right
“PEB1” “PEB2” “‘RIGHT”
10.0 10.1 Q4.0

+F - (R
Display for movement to left
“LEFT”
Q4.1

— ®

Figure B-4 Ladder Logic for Detecting the Direction of a Conveyor Belt

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Programming Examples

B.3 Timer Instructions

Clock Pulse
Generator

You can use a clock pulse generator or flasher relay when you need to
produce a signal that repeats periodically. A clock pulse generator is common
in a signalling system that controls the flashing of indicator lamps.

When you use the S7-300, you can implement the clock pulse generator
function by using time-driven processing in special organization blocks. The
example shown in the following ladder logic program, however, illustrates
the use of timer functions to generate a clock pulse.

The sample program in Figure B-5 shows how to implement a freewheeling
clock pulse generator by using a timer (pulse duty factor 1:1). The frequency
is divided into the values listed in Table B-5.

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

B-7

Programming Examples

Network 1: If the signal state of timer T 1 is 0, load the time value 250 msinto T1 and start T 1 as
an extended-pulse timer.

| MO0.2 T1
‘ Lt (se)

S5T#250MS

Network 2: The state of the timer is saved temporarily in an auxiliary memory marker.
| T1 MO.2

‘H C)

Network 3: If the signal state of timer T is “1”, jump to jump label NOO1.

MO0.2 NO001
i || /JMP>

Network 4: When the timer T1 expires, the memory word 100 is incremented by “1”.

ADD_|
EN ENO

MW100—IN1 OUT— MW100
1—IN2

Network 5: The MOVE instruction allows you to output the different clock frequencies at
outputs Q12.0 through Q 13.7.

MO001
MOVE
EN ENO
MW100— IN OUT— AW12

Figure B-5 Ladder Logic to Generate a Clock Pulse

Ladder Logic (LAD) for S7-300 and S7-400
B-8 C79000-G7076-C504-02

Programming Examples

A signal check of timer T 1 produces the result of logic operation (RLO, see
Sectioh 6.2) shown in Figure B-6.

ah

- 250ms —*

Figure B-6 RLO for Negated T 1 Contact in the Clock Pulse Timer Example

As soon as the time runs out, the timer is restarted. Because of this, the signal
check made by —| /|— T 1 produces a signal state of 1 only briefly.

Figure B-7 shows what the negated (inverted) RLO bit looks like.

!

<-— 250ms —>

Figure B-7 Negated RLO Bit of Timer T 1 in the Clock Pulse Timer Example

Every 250 ms the RLO bit is 0. The jump is ignored and the contents of
memory word MW100 is incremented by 1.

Achieving a Table B-5 lists the frequencies that you can achieve from the individual bits
Specific of memory bytes MB101 and MB100. Network 5 in the ladder logic diagram
Frequency shown in Figure B-5 illustrates how the MOVE instruction allows you to see

the different clock frequencies on outputs Q12.0 through Q13.7.

Table B-5 Frequencies for Clock Pulse Timer Example
Bits of Frequency in Hz Duration
MB101/MB100
M 101.0 2.0 0.5 s (250 ms on/250 ms off)
M 101.1 1.0 15 (0.5 s 0n/0.5 s off)
M 101.2 0.5 2s (1son/lsoff
M 101.3 0.25 45 (2 s on/2 s off)
M 101.4 0.125 8 s (4 s on/4 s off)
M 101.5 0.0625 16 s (8 s on/8 s off)
M 101.6 0.03125 32 s (16 s on/16 s off)
M 101.7 0.015625 64 s (32 s on/32 s off)
M 100.0 0.0078125 128 s (64 s on/64 s off)
M 100.1 0.0039062 256 s (128 s on/128 s off)
M 100.2 0.0019531 512 s (256 s on/256 s off)

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 B-9

Programming Examples

Table B-5 Frequencies for Clock Pulse Timer Example

Bits of Frequency in Hz Duration
MB101/MB100

M 100.3 0.0009765 1024 s (512 s on/512 s off)
M 100.4 0.0004882 2048 s (1024 s on/1024 s off)
M 100.5 0.0002441 4096 s (2048 s on/2048 s off)
M 100.6 0.000122 8192 s (4096 s on/4096 s off)
M 100.7 0.000061 16384 s (8192 s on/8192 s off)

Table B-6 lists the signal states of the bits of memory byte MB101.
Figure B-8 shows the signal state of memory bit M101.1.

Table B-6 Signal States of the Bits of Memory Byte MB101

Signal State of Bits of Memory Byte MB101 Time
Value
in ms

Scan

Cycle 4 3 2

o

250

250

250

250

250

250

250

250

250

Ol N0 | W[N] P

250

[EnY
o

250

[EnY
[N

250

o|o|o|o|o|o|o|lo|lo|lo|lo|lolo| N
o|lo|o|o|o|lo| ool o|lo|lo|l oo o
o|lo|o|o|o|lo| ool ool ol ol ol ;n
o|lo|o|o|lo|o|o|l o] o] o|lo|olo
Rl rR|r|olo|lo|l ol o|lo|o|o
r|lo|lo|lo|lo|lr|r|lr|r|l oo oo
o|lr|r|lolo|r|r|o|lo|r|r|ololr
o|lr|o|r|o|lr|o|r|olr|lolr|o| o

[EnY
N

250

1
M101.1 O

\ ‘ \ ‘ \ ‘ I Time
0 250ms 05s 0.75s 1s 1.25s 15s

Frequency = % = _113 = 1Hz

Figure B-8 Signal State of Bit 1 of MB101 (M 101.1)

Ladder Logic (LAD) for S7-300 and S7-400
B-10 C79000-G7076-C504-02

Programming Examples

B.4 Counter and Comparison Instructions

Storage Area with
Counter and
Comparator

Figure B-9 shows a system with two conveyor belts and a temporary storage
area in between them. Conveyor belt 1 delivers packages to the storage area.
A photoelectric barrier at the end of conveyor belt 1 near the storage area
determines how many packages are delivered to the storage area. Conveyor
belt 2 transports packages from the temporary storage area to a loading dock
where trucks take the packages away for delivery to customers. A
photoelectric barrier at the end of conveyor belt 2 near the storage area
determines how many packages leave the storage area to go to the loading
dock.

A display panel with five lamps indicates the fill level of the temporary
storage area. Figure B-10 show the ladder logic program that activates the
indicator lamps on the display panel.

Display Panel
AN | /7
O O O -0 O
Storage area Storage area Storage area Storage area Storage area
empty not empty 50% full 90% full filled to capacity
(Q 12.0) (Q12.1) (Q 15.2) (Q 15.3) (Q 15.4)
. 10.0 Temporary 10.1
Packages in T storage for 100 T Packages out
— —
‘ packages
O] Ol O,
Conveyor belt 1 | Conveyor belt 2
Photoelectric barrier 1 Photoelectric barrier 2

Figure B-9 Storage Area with Counter and Comparator

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

B-11

Programming Examples

Network 1: Counter C1 counts up at each signal change from “0” to “1” at input CU and counts down
at each signal change from “0” to “1” at input CD. With a signal change from “0” to "1” at input S, the
counter value is set to the value PV. A signal change from “0” to “1” at input R resets the counter
value to “0”. MW200 contains the current counter value of C1. Q12.1 indicates “storage area not
empty”.

c1
112.0 S-CUD /le-l
] U Q C)
112.1

; ; CD

1 S

C#10 — PV CVi— Mw210

| | R CV_BCDf— MW200

Network 2: Q12.0 indicates "storage area empty”.

Q12.1 12

Q
F (

B)

Network 3: If 50 is less than or equal to the counter value (in other words if the current counter value
is greater than or equal to 50), the indicator lamp for “storage area 50% full” is lit.

<= e >
\
50 —IN1
MW200— IN2

Network 4: If the counter value is greater than or equal to 90, the indicator lamp for “storage area 90%

full” is lit.
CMP 15.3
>= | P >
\
MW200— IN1
90 —IN2

Network 5: If the counter value is greater than or equal to 100, the indicator lamp for “storage area full”
is lit. Use output Q4.4 to interlock conveyor belt 1.

CMP 154
>= | ?
\
MW200— IN1
100 —IN2

Figure B-10 Ladder Logic for Activating Indicator Lamps on a Display Panel

Ladder Logic (LAD) for S7-300 and S7-400
B-12 C79000-G7076-C504-02

Programming Examples

B.5 Integer Math Instructions

Solving a Math The sample program in Figure B-11 shows you how to use three integer math
Problem instructions to produce the same result as the following equation:

_ (WO + DBW3) x 15

MD4 MWO

Network 1: Open Data Block DB1

| DB1
‘ <OPN

Network 2: Input word IWO0 is added to shared data word DBW3 (data block must be defined and
opened) and the sum is loaded into memory word MW100. MW100 is then multiplied by 15 and the
answer stored in memory word MW102. MW102 is divided by MWO with the result stored in MW4. As
long as all results are in the permissible range of each instruction, the ENO passes a signal state of 1
to the next box.

ADD _| MUL_| DIV_|
EN ENO EN ENO EN ENO
IWO0— IN1 MW100— IN1 MW102— IN1

DBW3—IN2 OUT [— MW100 15 —IN2 OUT —MW102 MWG—IN2 OUT — MD4

Figure B-11 Ladder Logic for Integer Math Instructions

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 B-13

Programming Examples

B.6 Word Logic Instructions

Heating an Oven

The operator of the oven shown in Figure B-12 starts the oven heating by
pushing the start push button. The operator can set the length of time for
heating by using the thumbwheel switches shown in the figure. The value
that the operator sets indicates seconds in binary coded decimal (BCD)
format. Table B-7 lists the components of the heating system and their
corresponding absolute addresses used in the sample program shown in

Figure B-13.

Table B-7

Heating System Components and Corresponding Absolute Addresses

System Component

Absolute Address in STL Program

Start push button

10.7

Thumbwheel for ones 11.0tol1.3
Thumbwheel for tens 114t011.7
Thumbwheel for hundreds 10.0to10.3
Heating starts Q4.0

Oven

Heat
Q4.0

7.

Thumbwheels for setting BCD digits

IS
I
I

7...|_ .0 Bits

| XXXX| 0001 | 1001 | 0001 | IWO0

Start push button | 0.7

Figure B-12

B-14

Using the Inputs and Outputs for a Time-Limited Heating Process

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Programming Examples

Network 1: If the timer is running, then turn on the heater. If the timer is running, the Return
instruction ends the processing here.

“Heating starts”
Q4.0

‘:: C)

Network 2: If the timer is running, the Return instruction ends the processing here.

|| (RET>

Network 3: Mask input bits | 0.4 through | 0.7 (that is, reset them to 0). These bits of the thumbwheel
inputs are not used. The 16 bits of the thumbwheel inputs are combined with W#16#0FFF according
to the (Word) And Word instruction. The result is loaded into memory word MWL1. In order to set the
time base of seconds, the preset value is combined with W#16#2000 according to the (Word) Or
Word instruction, setting bit 13 to 1 and resetting bit 12 to 0.

WAND_W WOR_W
EN ENO EN ENO
IWO— IN1 OUT— MW1 MW1 —IN1 OUT— MW2
WH#16#FFF — IN2 W#16#2000 — IN2

Network 4: Start timer T 1 as an extended pulse timer if the start push button is pressed, loading as
a preset value memory word MW?2 (derived from the logic above).

“Start”
10.7

T1
N (se)
MWwW?2

Figure B-13 Ladder Logic for Heating an Oven

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 B-15

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Number Notation

Chapter Overview

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Section

Description

Page

C1l

Number Notation

C-1

Number Notation

C.1 Number Notation

General
Information

Bits, Bytes, Words,
and Double Words

Data Types

C-2

Ladder logic instructions work with data objects of specific sizes (see
Table C-2). For example, the Bit Logic instructions perform their operations
on binary digits (bits); the Move instructions perform their operations on
bytes, words, and double words.

Math instructions also perform their operations on bytes, words, and double
words. In these byte, word, and double word addresses, you can code various
number formats such as integer and real.

If you use symbolic addressing, you define symbols and indicate a data type
for each of these symbols (see Table C-2). Different data types have different
format options and number notation. The information in the following
sections will help you understand formats and number notation.

This chapter of the manual describes only some of the possible number and
constant notations.

Table C-1 Number and Constant Formats Not Covered in this Chapter
Format Size in Bits Number Notation

Hexadecimal 8, 16, and 32 B#16#, W#16#, and DW#16#

Binary 8, 16, and 32 2

IEC date 16 D#

IEC time 32 T#

Time of day 32 TOD#

Character 8 A

A bit is a binary digit (0 or 1), a byte is 8 bits, a word is 16 bits, and a double
word is 32 bits.

Every input and output parameter of a LAD box can have one of the
following types:

¢ Elementary types (see Table C-2)

e Structured types (Array, Struct, String, Date_and_Time)
¢ Timer, counter and block types

¢ Pointer und array

More detailed information on data structures and arrays which you can define
yourself, and on data types with a different structure, such as STRING and
DATE_AND_TIME, is available in th®rogramming Manual120/andUser
Manual/231/

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Number Notation

Table C-2 Constant Formats for Elementary Data Types

Type and Size | Format Options | Range and Number Notation Example

Description | in (Lowest Value to Highest Value)

Bits

BOOL 1 Boolean text TRUE/FALSE TRUE

(Bit)

BYTE 8 Hexadecimal B#16#0 to B#16#FF B#16#10

(Byte) byte#16#10

WORD 16 |Binary 2#0 to 2#0001_0000_0000_0000

(Word) 2#1111_1111 1111 1111
Hexadecimal W#16#0 to W#16#FFFF W#16#1000

word16#1000
BCD C#0 to C#999 C#998
Unsigned decimal B#(0,0) to B#(255,255) B#(10,20)
byte#(10,20)

DWORD 32 |Binary 2#0 to 2#1000_0001_0001_1000_

(Double 2#1111 1111 1111 1111 1011_1011_0111 1111

word) 1111 1111 1121 1111
Hexadecimal DW#16#0000_0000 to DW#16#00A2_1234
Unsigned decimal DW#16#FFFF_FFFF dword#16#00A2_1234

B#(0,0,0,0) to B#(1,14,100,120)
B#(255,255,255,255) byte#(1,14,100,120)

INT 16 | Signed decimal [-32768 to 32767 1

(Integer)

DINT 32 | Signed decimal | L#-2147483648 to L#2147483647 | L#1

(Double

integer)

REAL 32 |IEEE Upper limit: +3.402823e+38 1.234567e+13

(Floating floating point Lower limit: £1.175 495e-38 (see also

point) Table C-5)

S5TIME 16 | S5 Timein S5T#0H_OM_0S_10MS to S5T#0H_1M_0S_OMS

(SIMATIC 10-ms units (as | S5T#2H_46M_30S_0OMS and S5TIME#0H_1M_0S_0OMS

time) default value) S5T#0H_OM_0S_OMS

TIME 32 |IECtimein 1-ms | T#-24D_20H_31M_23S_648MS to| T#OD_1H_1M_0S_OMS

(IEC time) units, signed T#24D_20H_31M_23S_647MS TIME#0D_1H_1M_0S_OMS
integer

DATE 16 |IEC date D#1990-1-1 to D#1994-3-15

(IEC date) in 1-day units D#2168-12-31 DATE#1994-3-15

TIME_OF_ | 32 |Time of day in TOD#0:0:0.0 to TOD#1:10:3.3

DAY 1-ms units TOD#23:59:59.999 TIME_OF_DAY#1:10:3.3

(Time of

day)

CHAR 8 Character 'A,’B’, and so on 'E’

(Character)

Integers: 16 Bits

An integer is a whole number that has a sign to indicate whether it is positive

or negative. In memory, a 16-bit integer takes up one word of space.

Table C-3 shows the range of a 16-bit integer. Figure C-1 shows the integer

+ 44 in binary format.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

C-3

Number Notation

Double Integers:
32 Bits

Table C-3 Integer Range

Format Range
16-hit integer -32,768 to +32,767
Bits 15 12 11 8 7 4 3 0
(00 00[oo0o0o0l0oo010[1100]
Sign Decimal Values: 32 + 8+4=44

Figure C-1 A 16-Bit Integer in Binary Format: +44

An integer is a whole number that has a sign to indicate whether it is positive
or negative. In memory, a 32-bit integer (double integer) takes up two words
of space. Table C-4 shows the range of a double integer. Figure C-2 shows
the integer - 500,000 in binary format. In binary format, the negative form of
an integer is represented as the twos complement of the positive form of that
integer. You obtain the twos complement of an integer by inverting the signal
states of all bits and then adding + 1 to the result.

Table C-4 Double Integer Range

Format Range
32-bit integer -2,147,483,648 to +2,147,483,647
Bits
31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

l1/1 1 2]12111/1111/1000]l0101]l1110/1110]/0000]

I
Sign

Figure C-2 A 32-Bit Integer in Binary Format: -500,000

Real Numbers

C-4

A real number (also called floating-point number) is a positive or negative
number that includes a decimal value, for example, 0.339 or - 11.1. You can
also include an exponent with a real number to indicate the integer power of
10 by which the real number is multiplied to obtain the value you want to
represent. For example, you can represent 1,234,000 as 1.234E6 or 1.234e6
(that is, 1.234 10°). Table C-5 shows the range of a real number.

In memory, a real number takes up two words of space (32 bits, see

Figure C-3). The most significant bit indicates the sign of the number (bit 31,
where 0 indicates plus, 1 indicates minus). The other bits represent the
exponent and the mantissa.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Number Notation

Table C-5 Real Number Ranges

Format Rangée!
-3.402823E+38 to -1.175495E-38
Real numbers and + 0 and
+1.175495E-38 to +3.402823E+38

1 If the result of a floating-point operation falls into the ranges of -1.175495E-38 to
-1.401298E-45 or +1.401298E-45 to +1.175495E-38, then an underflow is
generated (see Table 12-6). This is the range of denormalized numbers.

Format for Real Real numbers (also called floating-point numbers) in ladder logic conform to

Numbers the basic format, single width, described in ANSI/IEEE Std 754- IS8T,
Standard for Binary Floating-Point Arithmetitn this format, you can
represent only those values that are specified by the following three integer
parameters:

¢ p = the number of significant bits (precision)
* Emax=the maximum exponent
® Emin = the minimum exponent

Table C-6 shows the format parameters.

Table C-6 Format Parameters for Real Numbers
Parameter Name Parameter Value
p 24
Emax +127
Emin -126
Exponent bias +127
Exponent width in bits 8
Format width in bits 32

The format includes the following entities:
* Numbers of the form (-£2F (bg . by by...p-1), where
— s=0orl
— E = any integer betweenyg and Enay inclusive
— B=0or1
¢ Two infinities, +c0 and <o
* Atleast one signaling NaN (NaN means “not a floating-point number”)

e At least one quiet NaN (NaN means “not a floating-point number”)

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 C-5

Number Notation

Component Fields
of a Real Number

Real numbers (also called floating-point numbers) of the basic format, single
width, are composed of the following fields (see Figure C-3):

e A one-bit sign: s
* A biased exponent: e = E + bias
e Afraction: f=.byby...h 1

The range of the unbiased exponent E is every integer betwgeart
Emax (that is, -126 to +127), inclusive, and two other reserved valygslE
to encodet+ 0 and denormalized numbers, anghk+ 1 to encodet « and
NaNs.

Figure C-3 shows the three fields (s, e, and f) of a 32-bit floating-point
number. In the figure, a 32-bit floating-point number X has a value v that you
derive from the fields in the following manner:

e Ife=255and if f=0, then v is NaN regardless of s.
e Ife=255andiff=0,thenv=(31)o.
e If0<e<255, thenv=(-1pe127(1.1).
(In this case, you are dealing with a normalized number.)
e Ife=0andf=0, thenv=(-1926126(0 . f).
(In this case, you are dealing with a denormalized number.)
e Ife=0andf=0,thenv= (31D (zero).

Bits

31 28 27 24 23 20 19 16 15 12 11 87 4 3 0
Ls | e | f |

| — _/

Sign of Exponent: e Mantissa or fraction: f

Mantissa: s (8 hits) (23 hits)

(1 bit)
Figure C-3 ~ Format of a Real Number

C-6

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Number Notation

Examples of Real
Number Format

Figure C-4 shows the real number format for the following decimal values:
e 10.0

e 1(3.141593)

e Square root of 2.2 = 1.414214)

The hexadecimal value for the real number is shown in the row above the bit

numbers.
Decimal value 10.0
Hexadecimal ! ! ! ! ! ! !
value 4 X 1 X 2 X 0 ' 0 ' 0 ' 0 ' 0
Bits 31 28|27 24|23 20(19 16(15 1211 8|7 43 0
[0:1:0:0[{0:0:0:1/0:0:1:0[0:0:0:0/0:0:0:0[0:0:0,0[0:0:0:0[{0:0:0:0]
| — _/
Sign of Exponent: e Mantissa or fraction: f
Mantissa: s (8 bits) (23 bits)
(1 bit) e=27+21=130
1.f 4 26-bias = 1 25 4 23=10.0 f=22=025
[1.25 & 2(130-127) = 1 25 4 23 = 10.0]
Decimal value 3.141593
Hexadecimal ' ' ' ' ' '
value 4 ! 0 ' 4 ' 9 ; 0 ! = ! D c
Bits 31 28(27 24|23 20/19 16[15 12)11 8|7 43 0
[0:1.0:0[0:0:0:0[0:1:0:0[1:0:0:1/0:0:0:0[1:1:1 1[1:1:0:1[1:1:0:0]
| — /
Sign of Exponent: e Mantissa or fraction: f
Mantissa: s (8 hits) (23 bits)
(1 bit)
Decimal value 1.414214
Hexadecimal))) ' ' ! !
value 3 ' F ' B ' 5 ' 0 ' 4 ' F ' 7
Bits 31 28|27 24|23 20(19 16(15 1211 817 43 0
[000:1:1{1:1:1:1]1.0:1:1[0:1:0:1/0:0:0:0[0:1:0,0[1:1:1:1[0:1:1:1
| — /
Sign of Exponent: e Mantissa or fraction: f
Mantissa: s (8 bits) (23 bits)
(1 bit)
Figure C-4 Example of a Floating-Point Number Format for Decimal Value 10.0

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

C-7

Number Notation

Binary Coded The binary coded decimal (BCD) format represents a decimal number by
Decimal Numbers using groups of binary digits (bits). One group of 4 bits represents one digit

of a signed decimal number or the sign of the decimal number. The groups of

4 bits are combined to form a word (16 bits) or double word (32 bits). The
four most significant bits indicate the sign of the number (1111 indicates

minus and 0000 indicates plus). Commands with BCD-coded addresses only

evaluate the highest-value bit (15 in word, 31 in double word format).
Table C-7 shows the format and range for the two types of BCD numbers.
Figure C-5 and Figure C-6 provide an example of a binary coded decimal
number in word format and double word format, respectively.

Table C-7 Binary Coded Decimal Numbers with 16 and 32 Bits

Format Range
Word (16 bits, three-digit BCD number -999 to +999
with sign)
Double word (32 bits, seven-digit BCD -9,999,999 to +9,999,999
number with sign)

+310 (Decimal format)
N
Bits 15 12 11 8 7 4 3 0
lo o o oloo1 1/oo001/000 0]
| Hundreds Tens Ones
Sign (102) (10%) (100)

Figure C-5 Binary Coded Decimal Number in Word Format

-9,999,999 (Decimal format)

. N\

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0
l1111/1001[/1001/1001]l1001/1001/20012[1001]
Sign Millions Hundreds of Tens of Thousands Hundreds Tens Ones
(10%) Thousands Thousands (103) (102 (10% (109

(109 (10%

Figure C-6 Binary Coded Decimal Number in Double Word Format

Ladder Logic (LAD) for S7-300 and S7-400
C-8 C79000-G7076-C504-02

Number Notation

Entering Duration
of Time

Entering Date and
Time

When you enter time duration using the S5TIME data type, your entries are
stored in binary coded decimal format (BCD, see Figure C-7 and Table C-8).

When working with S5TIME, you enter a time value in the range of 0 to 999
and you indicate a time base (see Table C-8). The time base indicates the
interval at which a timer decrements the time value by one unit until it
reaches 0.

15... .8 T .0
‘X\ x\l\O‘ orol ol l‘ ol 0l 1\0‘0\ 11 1\1|

- —A A N A /
\%—7/
Time base Time value in BCD (0 to 999)
1 second

Irrelevant: These bits are ignored when the timer is started.

Figure C-7 Contents of Timer Address: Timer Value 127, Time Base 1 Second

Table C-8 Time Base for S5TIME

Time Base Binary Code for the Time Base
10 ms 00
100 ms 01
1s 10
10s 11

You can pre-load a time value using either of the following syntax formats:
o W#16#wxyz

— Where w = the time base (that is, the time interval or resolution)

— Where xyz = the time value in binary coded decimal format
e S5T#aH_bbM_ccS_ddMS

— Where a = hours, bb = minutes, cc = seconds, and dd = milliseconds

— The time base is selected automatically and the value is rounded to the
next lower number with that time base.

The maximum time value that you can enter is 9,990 seconds, or
2H_46M_30S.

When you enter date and time using the DATE_AND_TIME data type, your
entries are stored in binary coded decimal format (see Table C-9). The
DATE_AND_TIME data type has the following range:

DT#1990-1-1-0:0:0.0 to DT#2089-12-31-23:59:59.999

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

C-9

Number Notation

C-10

The following examples show the syntax for the date and time for Thursday,
December 25, 1993, at 8:01 and 1.23 seconds in the morning. The following
two formats are possible:

e DATE_AND_TIME#1993-12-25-8:01:1.23
e DT#1993-12-25-8:01:1.23

The following special IEC (International Electrotechnical Commission)
standard functions are available for working with the DATE_AND_TIME
data type (for more information, see fi@gramming Manual234':

¢ Convert date and time of day to the DATE_AND_TIME (DT) format
FC3:D_TOD_DT

e Extract the date from the DATE_AND_TIME format
FC6: DT_DATE

e Extract the day of the week from the DATE_AND_TIME format
FC7: DT_DAY

e Extract the time of day from the DATE_AND_TIME format
FC8: DT_TOD

Table C-9 shows the contents of the bytes that contain the date and time
information for Thursday, December 25, 1993, at 8:01 and 1.23 seconds in
the morning.

Table C-9 Contents of the Date and Time Bytes

Byte Contents Example
0 Year B#16#93
1 Month B#16#12
2 Day B#16#25
3 Hour B#16#08
4 Minute B#16#01
5 Second B#16#01
6 Two most significant digits of MSEC B#16#23
7 Least significant digit of MSEC B#16#6
(4MSB)
7 Day of week B#16#5
(4LSB) 1 = Sunday
2 = Monday
;.: Saturday

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

References

130/

70/

171/

172/
1100/

1101/

1102/
1231/

1232/

1234/

1235/

1236/

1237/
1250/

1251/

1252/

1253/

1254/

D

Primer:S7-300 Programmable Controller,
Quick Start

Manual:S7-300 Programmable Controller,
Hardware and Installation

Reference ManuaB7-300, M7-300 Programmable Controllers
Module Specifications

Instruction List:S7-300 Programmable Controller

Manual:S7-400/M7-400 Programmable Controllers,
Hardware and Installation

Reference Manua87-400/M7-400 Programmable Controllers
Module Specifications

Instruction List:S7-400 Programmable Controller

User ManualStandard Software for S7 and M7,
STEP 7

Manual:Statement List (STL) for S7-300 and S7-400
Programming

Programming ManuaBystem Software for S7-300 and S7-400
Program Design

Reference ManuaBystem Software f&7-300 and S7-400
System and Standard Functions

Manual: FBDfor S7-300 and 400,
Programming

Master IndexSTEP 7

Manual:Structured Control Language (SCL) for S7-300/S7-400,

Programming

Manual:GRAPH for S7-300 and S7-400,
Programming Sequential Control Systems

Manual:HiGraph for S7-300 and S7-400,
Programming State Graphs

Manual:C Programming for S7-300 and S7-400,
Writing C Programs

Manual:Continuous Function Charts (CFC) for S7 and M7,
Programming Continuous Function Charts

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

D-1

References

/270/ Manual: S7-PDIAG for S7-300 and S7-400
“Configuring Process Diagnostics for LAD, STL, and FBD”

1271/ Manual:NETPRO,
“Configuring Networks”

/800/ DOCPRO
Creating Wiring Diagrams (CD only)

/801/ TeleService for S7, C7 and M7
Remote Maintenance for Automation Systems (CD only)

/802/ PLC Simulation for S7-300 and S7-400 (CD only)

1803/ Reference ManuaBtandard Software for S7-300 and S7-400,
STEP 7 Standard Functions, Part 2

Ladder Logic (LAD) for S7-300 and S7-400
D-2 C79000-G7076-C504-02

Glossary

A

Absolute
Addressing

Accumulator

Actual Parameter

Address

Address Identifier

Address Register

Array

Absolute addressing specifies the location of the address which is currently
being processed.

Accumulators are registers in the CPU which act as intermediate buffers for
load, transfer, comparison, math, and conversion operations.

Actual parameters replace the formal parameters when function blocks (FB)
and functions (FC) are called.

Example: The formal parameter “Start” is replaced by the actual parameter
“1 3.6".

An address is part of a STEP 7 statement instruction which determines the
medium the processor should use to do something. It can be addressed with
either an absolute or a symbolic name.

An address identifier is the part of the address which contains various data.
The data can include elements such as a value itself (data object) or the size
of a value with which the instruction can, for example, perform a logic
operation. In the instruction statement “L IB10” IB is the address identifier
(“I” indicates the memory input area and “B” indicates a byte in that area).

The address register is part of the registers in the communication part of the
CPU. They act as pointers for register indirect addressing (possible in STL).

An array is a complex data type which consists of data elements of the same
type. These elements can be elementary or complex.

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Glossary-1

Glossary

Bit Result (BR)

C

Call Hierarchy

Chart

Condition Codes
CClandCCO

Container

CPU

Current Path

Glossary-2

The bit result is the link between bit and word-oriented processing. This is an
efficient method to allow the binary interpretation of the result of a word
instruction and to include it in a series of logic operations.

All blocks must be called first before they can be processed. The sequence
and nesting of these calls within an organized block is called the call
hierarchy.

Specific graphic source file created with the programming language CFC
(Continuous Function Chart).

The CC 1 and CC 0 bits (condition codes) provide information on the
following results or bits:

¢ Result of a math operation
* Result of a comparison
¢ Result of a digital operation

¢ Bits that have been shifted out by a shift or rotate command

Folder of the user interface of the SIMATIC Manager which can be opened
and can hold other folders and objects.

A CPU (central processing unit) is the central module in a programmable
controller in which the user program is stored and processed. It consists of an
operating system, processing unit, and communication interfaces.

Characteristics of the Ladder Logic representation type. Current paths
contain contacts and coils. Complex elements (e.g. math functions) can also
be inserted into current paths in the form of “boxes”. Current paths are
connected to power rails.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Glossary

D

Data Block (DB)

Data, Static

Data Type

Data Type,
Complex

Data Type,
Elementary

Declaration

Direct Addressing

Data blocks are areas in a user program which store user data. There are
shared data blocks which can be accessed by all logic blocks and there are
instance data blocks which are associated with a certain function block (FB)
calls. In contrast to all other blocks, data blocks do not contain instructions.

Static data are local data of a function block which are stored in the instance
data block and, therefore, remain intact until the function block is processed
again.

A data type defines how the value of a variable or a constant should be used
in the user program.

In SIMATIC STEP 7 two data types are available to the user (IEC 1131-3):
* Elementary data types

¢ Complex data types

Complex data types are created by the user with the data type declaration.
They do not have their own name and cannot, therefore, be used again. They
can either be arrays or structures. The data types STRING and DATE AND
TIME are classed as complex data types.

Elementary data types are preset data types according to IEC 1131-3.
Examples:

¢ “BOOL” defines a binary variable (“Bit”")

e Data type “INT” defines a 16-bit fixed-point variable.

The declaration section is used for the declaration of the local data of a logic
block when programming in the Text Editor.

In direct addressing the address contains the memory location of a value
which is to be used by the instruction.

Example:

The location Q4.0 defines bit 0 in byte 4 of the process-image output table.

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Glossary-3

Glossary

First Check Bit

Folder

Formal Parameter

Function (FC)

Function Block
(FB)

Function Block
Diagram (FBD)

Immediate
Addressing

Glossary-4

First check of the result of logic operation.

A folder on the user interface of the SIMATIC Manager that can be opened
and that can contain other folders and objects.

A formal parameter is a stand-in for the actual parameter in logic blocks. In
function blocks (FBs) and functions (FCs) the formal parameters are declared
by the user, in system function blocks (SFBs) and system functions (SFCs)
they are already available. When a block is called, formal parameters are
assigned actual parameters; the block works with the actual parameters.

The formal parameters are classed as local data. They can be input, output, or
infout parameters.

According to the International Electrotechnical Commission’s IEC 1131-3
standard, functions are logic blocks that do not reference an instance data
block, meaning they do not have a 'memory’. A function allows you to pass
parameters in the user program, which means they are suitable for
programming frequently recurring, complex functions, such as calculations.

According to the International Electrotechnical Commission’s IEC 1131-3
standard, function blocks are logic blocks that reference an instance data
block, meaning they have static data. A function block allows you to pass
parameters in the user program, which means they are suitable for
programming frequently recurring, complex functions, such as closed-loop
control and operating mode selection.

Function Block Diagram is one of the programming languages in STEP 7.
FBD represents logic in the boxes familiar from Boolean algebra. In STEP 5,
this language is known as Control System Flowchart (CSF).

In immediate addressing the address contains the value with which the
instruction works.

Example: L.27 means load constant 27 into accumulator.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Glossary

Input, Incremental

Instance

Instance Data

Block (DB)

Instruction

K

Key Word

Ladder Logic
(LAD)

Logic Block

When a block is input incrementally, each line or element is checked
immediately for errors (for example syntax errors). If an error is detected, it
is marked and must be corrected before programming is completed.
Incremental input is possible in STL (Statement List), LAD (Ladder Logic),
and FBD (Function Block Diagram).

An “instance” is the call of a function block. If, for example, a function is
called five times in a STEP 7, then there are five instances. Each call is
assigned to an instance data block.

An instance data block stores the formal parameters and the static local data
of function blocks. An instance data block can be assigned to one or more
function blocks.

An instruction is part of a statement; it specifies what the processor should
do.

Key words are used when programming with source files to identify the start
and end of a block and to select sections in the declaration section of blocks,
the start of block comments and the start of titles.

Ladder Logic is a graphic programming language in STEP 5 and STEP 7. Its
representation is standardized in compliance with DIN 19239 (international
standard IEC 1131-1). Ladder Logic representation corresponds to the
representation of relay ladder logic diagrams. In contrast to Statement List
(STL), LAD has a restricted set of instructions. In STEP 5, this language is
known as Ladder Diagram.

Logic blocks are the blocks within STEP 7 that contain the program for the
control logic. In contrast, data blocks (DBs) only contain data. There are the
following types of logic blocks: organization blocks (OBs), functions (FCs),
function blocks (FBs), system functions (SFCs), and system function blocks
(SFBs).

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Glossary-5

Glossary

Logic String

M

Master Control
Relay

Memory Area

Memory Indirect
Addressing

Mnemonic
Representation

Nesting Stack

Network

Glossary-6

A logic string is that portion of a user program which begins with ahiEC
that has a signal state of 0 and which ends when an instruction or event resets
the FChit to 0. When the CPU executes the first instruction in a logic string,
the FChbit is set to 1. Certain instructions such as output instructions (for
example, Set, Reset, or Assign) reset théoFE@ 0.SeeFirst Check Bit

above.

The Master Control Relay (MCR) is an American relay ladder logic master
switch for energizing and de-energizing power flow (current path). A
de-energized current path corresponds to an instruction sequence that writes a
zero value instead of the calculated value, or, to an instruction sequence that
leaves the existing memory value unchanged.

A CPU in the SIMATIC Manager has three memory areas:
e Load memory
e Work memory

e System memory

A type of addressing in which the address of an instruction indicates the
location of the value with which the instruction is to work.

Mnemonic representation is an abbreviated form for displaying the names of
addresses and programming instructions in the program (for example, “I”
stands for “input”). STEP 7 supports the international representation (based
on the English language), and the SIMATIC representation (based on the
German abbreviations of the instruction set and the SIMATIC addressing
conventions).

The nesting stack is a storage byte used by the nesting instructions A(, O,
X(, AN(, ON(, XN(. A total of eight bit logic instructions can be stacked.

Networks subdivide LAD blocks into complete current paths.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Glossary

OR Bit

Overflow Bit

Pointer

Project

R

Reference Data

Register Indirect
Addressing

Result of Logic
Operation (RLO)

The OR bit is needed if you perform a logical AND before OR operation.

The OR bit shows these instructions that a previously executed AND function
has supplied the value 1, thus forestalling the result of the logical OR
operation. Any other bit-processing command resets the OR bit.

The status bit OS stands for overflow. An overflow can occur, for example,
after a math operation.

You can use a pointer to identify the address of a variable. A pointer contains
an identifier instead of a value. If you allocate an actual parameter type, you
provide the memory address. With STEP 7 you can either enter the pointer in
pointer format or simply as an identifier (e.g. M 50.0). In the following
example, the pointer format is shown with which data from M 50.0 is
accessed:

P#M50.0

A project is a container for all objects in an automation task, irrespective of
the number of stations, modules, and how they are connected in networks.

Reference data are used to check your CPU program and include cross
reference lists, assignment list, user program structure, the list of unused
addresses, and the list of addresses without symbols.

A type of addressing in which the address of an instruction indicates
indirectly via an address register and an offset the memory location of the
value with which the instruction is to work.

The result of logic operation (RLO) is the current signal state in the
processor, which is used to process other binary signals. The execution of
certain instructions depends entirely on their preceding RLO.

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Glossary-7

Glossary

S

S7 Program

Shared Data Block
(DB)

SIMATIC Manager

Source File

Statement

Statement List
(STL)

Station

Status Bit

Glossary-8

A container for user programs, source files, and charts for S7 programmable
controllers. The S7 program also includes the symbol table.

A shared data block is a DB whose address is loaded in the DB address
register when it is opened. It provides storage and data for all logic blocks
(FC, FB, or OB) that are being executed.

In contrast, an instance DB is designed to be used as specific storage and data
for the FB with which it has been associated.

The SIMATIC Manager is the graphical user interface for SIMATIC users
under Windows 95.

A source file (text file) is part of a program created either with a graphic or a
textual Editor and is compiled into an executable S7 user program or the
machine code for M7.

An S7 source file is stored un the “Sources” folder in the S7 program.

A statement is the smallest independent part of a user program created in a
textual language. The statement represents a command for the processor.

Statement List is a textual representation of the STEP 7 programming
language, similar to machine code. STL is the assembler language of STEP 5
and STEP 7. If you program in STL, the individual statements represent the
actual steps in which the CPU executes the program.

A station is a device which can be connected to one or more subnets, for
example the programmable controller, programming device, operator station.

The status bit stores the value of a bit that is referenced. The status of a bit
instruction that has read access to the memory (A, AN, O, ON, X, XN) is
always the same as the value of the bit that this instruction checks (the bit on
which it performs its logic operation). The status of a bit instruction that has
write access to the memory (S, R, =) is the same as the value of the bit to
which the instruction writes or, if no writing takes place, the same as the
value of the bit that the instruction references. The status bit has no
significance for bit instructions that do not access the memory. Such
instructions set the status bit to 1 (STA=1). The status bit is not checked by
an instruction. It is interpreted during program test (program status) only.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Glossary

Status Word

STL Source File

Stored Overflow
Bit

Symbolic
Addressing

System Function
(SFC)

System Function
Block (SFB)

Symbol

Symbol Table

U

User Data Types
(UDTs)

The status word is part of the register of the CPU. It contains status
information and error information which is displayed when specific STEP 7
commands are executed. The status bits can be read and written on by the
user, the error bits can only be read.

A source file programmed in Statement List.

The status bit OS stands for “stored overflow bit of the status word”. An
overflow can take place, for example, after a math operation.

In symbolic addressing the address being processed is designated with a
symbol (as opposed to an absolute address).

A system function is integrated in the CPU and can, if necessary, be called
from the STEP 7 user program.

A system function block is a function block that is integrated in the S7
operating system that you can call from your program if necessary.

A symbol is a name which can be defined by the user subject to syntax
guidelines. After it has been declared (for example, as a variable, data type,
jump label, block etc) the symbol can be used for programming and for
operator interface functions. Example: Address: | 5.0, data type: Bool,
Symbol: momentary contact switch / emergency stop.

A table in which the symbols of addresses for shared data and blocks are
allocated. Examples: Emergency Stop (symbol) -1 1.7 (address) or
closed-loop control (symbol) - SFB24 (block).

User data types are special data structures which you can create yourself and
use in the entire CPU program after they have been defined. They can be
used like elementary or complex data types in the variable declaration of
logic blocks (FCs, FBs, OBs) or as a template for creating data blocks with
the same data structure.

Ladder Logic (LAD) for S7-300 and S7-400

C79000-G7076-C504-02

Glossary-9

Glossary

User Program

User Program
(SW Object)

User Program

Structure

\%

Variable
Declaration

Variable
Declaration Table

Variable Table

Glossary-10

The user program contains all the statements and declarations and all the data
for signal processing which can be used to control a device or a process. Itis
part of a programmable module (CPU, FM) and can be structured with

smaller units (blocks).

A container for blocks loaded into a programmable S7 module (e.g. CPU,
FM) where they are capable of running to control a unit or process.

The user program structure describes the call hierarchy of the blocks within a
CPU program and provides an overview of the blocks used and their
dependency.

The variable declaration includes a symbolic name, a data type and,
optionally, an initial value, an address, and a comment.

The variable declaration table is used for declaring the local data of a logic
block, when programming takes place in the Incremental Editor.

The variable table is used for compiling all the variables that are to be
observed and controlled along with their corresponding formats.

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Index

Symbols

(Word) And Double Word (WAND_DW)
instruction, 15-4-15}5

(Word) And Word (WAND_W) instruction,
15-3J15-h

(Word) Exclusive Or Double Word
(WXOR_DW) instruction, 15-8-15-9

(Word) Exclusive Or Word (WXOR_W)
instruction, 15-7F1518

(Word) Or Double Word (WOR_DW)
instruction, 15-615}7

(Word) Or Word (WOR_W) instruction,
15-5{15-p

—().SeeOutput Coil instruction

—(#)—.SeeMidline Output instruction

—(CALL). SeeCall FC/SFC from Caoil
instruction

—(CD).Seebown Counter Colil instruction

—(CU).SeeUp Counter Coil instruction

—(JMP).SeeJump instruction

—(JMPN).SeeJump—If—Not instruction

—(MCR<).SeeMaster Control Relay On
instruction

—(MCR>).SeeMaster Control Relay Off
instruction

—(N)—.SeeNegative RLO Edge Detection
instruction

—(P)—.SeePositive RLO Edge Detection
instruction

—(R).SeeReset Coil instruction

—(RET).SeeReturn instruction

—(S).SeeSet Coil instruction

—(SAVE).SeeSave RLO to BR Memory
instruction

—(SC).SeeSet Counter Value instruction

—(SD).SeeOn-Delay Timer Coil instruction

—(SE).SeekExtended Pulse Timer Caoll
instruction

—(SF).SeeOff-Delay Timer Coil instruction

—(SP).SeePulse Timer Coil instruction

—(SS).SeeRetentive On-Delay Timer Caoill
instruction

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

—(ZR).SeeDown Counter Coil instruction,
SIMATIC short name

—(2V). SeeUp Counter Coil instruction,
SIMATIC short name

—| [—SeeNormally Open Contact (Address)
instruction

—1| BIE |—SeeException Bit BR Memory
instruction, SIMATIC short name

—| BR |—SeeException Bit BR Memory
instruction

—| OV |—SeeException Bit Overflow
instruction

—| OVS|—SeeException Bit Overflow Stored
instruction

—| UO |—SeeException Bit Unordered
instruction

—|/[—SeeNormally Closed Contact (Address)
instruction

—|NOT|—Seelnvert Power Flow instruction

A

Absolute addressing, practical applicatlon,|B-4
Absolute value, floating-point numbegr, 12-8
Accumulators
count value irf, 10}2
time value in[9-3
ACOS.SeeArc cosine
Actual value
data view of] 416
reinitializing,|4-7
Actual values
changing[437
saving[4-F
Add Double Integer (ADD_DI) math
instruction, 11-3-11}4

Add Integer (ADD_I) math instruction,

11-211-8

Add Real (ADD_R) floating-point math

instruction, 12-3-12{4
ADD_DI. SeeAdd Double Integer math

instruction

Index-1

Index

ADD_I. SeeAdd Integer math instruction
ADD_R. SeeAdd Real floating-point math

instruction
Address]| 377
description of] 74

entering in Laddef, 3-23
label for a jump instructiof, 1§-2
types[7-h

Address Negative Edge Detection (NEG)
instruction, 8-22-8-23

Address Positive Edge Detection (POS)
instruction, 8-218-22

Addressing

absolute], B-§

definition of [7-2

symbolic] 3-24| B-
Arc cosine (ACOS), 12-1
Arc sine (ASIN), 12-13-12-14
Arc tangent (ATAN)| 12-13
Arrays, in the variable declaration tatjle,| 3-9
ASIN. SeeArc sine
Assign a Value (MOVE) instruction, 142—14-3
Assignment

DBs to FBs| 44

DBs to UDTs| 4-4
ATAN. SeeArc tangent

15

B

BCD. SeeBinary coded decimal format

BCD to Double Integer (BCD_DI) conversion
instruction, 14-7F-1418

BCD to Integer (BCD_I) conversion instruction,
14-4114-5

BCD_DI. SeeBCD to Double Integer
conversion instruction

BCD_I|. SeeBCD to Integer conversion
instruction

BCDF. SeeErrors, binary coded decimal
conversion

Binary coded decimal (BCD) formét, €-8

Binary result (BR)
Exception Bit BR Memory —| BR |—

instruction| 19-B

saving the RLO to the binary result 8—8

Bit, as data typg, G-2

Bit logic, practical applications, B-@-G

Index-2

Bit logic instructions, 8-2—-8-33
See alsdstatus bit instructions
Address Negative Edge Detection,
8-22-8-28
Address Positive Edge Detection, 821-8-22
Down Counter Coil —(CDJ, 8-13
Extended Pulse Timer Coil —(SE), §-15
Invert Power Flow —|NOT|—f, 8-7
Midline Output —(#)—, 8-6-87
Negative RLO Edge Detection —(N)—,
8-20
Normally Closed Contact (Address) —|/|—,
8-4-8-%
Normally Open Contact (Address) —| |—,
8-3
Off-Delay Timer Coil —(SF), 8-18
On-Delay Timer Coil —(SDJ}, 8-16
Output Coil —()—, 8—523—6
Positive RLO Edge Detection —(P){—, 8-19
practical applications, B—E-G
Pulse Timer Coil —(SP), 8—115
Reset Coil —(R), 8-10
Reset Set Flipflop, 8-24-8-25
Retentive On-Delay Timer Coil —(S$), 817
Save RLO to BR Memory, §-8
Set Coil —(S)| 8l9
Set Counter Value —(S@), 8}11
Set Reset Flipflop, 8-23-8-24
Up Counter Coil —(CU), 8-12
Block attributes, in the Incremental Editor, |5-3
Block propertied], 312, 4}2
processing of, 512
Block protection|, 53
Blocks
abandoningd, 20}7
calling, 20-24-206

from libraries| 3-20

creating| 2-5
downloading| 216
entering in STL, 3-14
opening[2-5

order of creating, 2}7
properties| 314, 412
saving| 2-p

Boolean (BOOL)

as data type, C-2
range| 7-8, C13

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Index

Branch, creating, 3-21
Byte
as data typé, C}2
range| 78, C{3

C

Call environment, 517
See alsdrigger conditions
Call FC/SFC from Coil —(CALL) instruction,
20-2-20-B
Calling function blocks
effect of the call on the bits of the status
word,[20-4
from a box, 20—4@-6
supplying parameter@-G
Calling functions
effect of the call on the bits of the status
word,[20-4
from a box, 20-4-20|6
supplying parameters, 20-6
with the Call FC/SFC from Coil instruction,
20-2-420-8
Calling system function blocks
effect of the call on the bits of the status
word,[20-4
from a box, 20-4-20]6
supplying parameters, 20-6
Calling system functions
effect of the call on the bits of the status

word,[20-4

supplying parameters, 20-6

with the Call FC/SFC from Coil instruction,
20-2-20-3

CEIL. SeeCeiling conversion instruction

Ceiling (CEIL) conversion instruction,
14-17414-1B

Character (CHAR), rangk, 713, ¢-3

Checking the scan time, 5-9
CMP_D.SeeCompare Double Integer

instruction
CMP_I.SeeCompare Integer instruction
CMP_R.SeeCompare Real instruction
Code sectior], 32
editable parts, 3-13
editing,[3-1
Ladder) 3-
Color, of selection$, 3-18
Column width, in the variable declaration table,

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Comment
block comment, 3-48
in the declaration table, 3-7
network commenf, 3-28
Compare Double Integer (CMP_D) instruction,
13-3J13-4
Compare Integer (CMP_]I) instruction,
13-2-13-8
Compare Real (CMP_R) instruction, 13-5-13-6
Comparing the result of a math function to 0,
19-419-5

Comparison instructions

Compare Double Integer, 13{3-183-4
Z—li

Compare Integer, 13- -3

Compare Real, 13-5-13-6

practical applications, B-11-BJ12

Condition codes (C@ 1 and CC 0)

as affected by floating-point math
instructions], 1247

as related to the Exception Bit Unordered
instruction, 19-67

as related to the Result Bits instructions,
19-4-119-5

Conversion instructions

BCD to Double Integer (BCD_DI),
14-7-14-8

BCD to Integer (BCD_I), 14-4-14-5

Ceiling (CEIL), 14-17F-14-18

Double Integer to BCD (DI_BCD),
14-8-114-H

Double Integer to Real (DI_REAL),
14-9{14-1p

Floor (FLOOR), 14-18-14-19

Integer to BCD (I_BCD), 14-5-14-6

Integer to Double Integer (I_DINT),
14-6-{14-f

Negate Real Number (NEG_R),
14-14-14-1b

Ones Complement Double Integer
(INV_DI), 14-11{14-1p

Ones Complement Integer (INV_1I),
14-10414-1]

Round to Double Integer (ROUND),
14-15414-16

Truncate Double Integer Part (TRUNC),
14-16-114-1F

Twos Complement Double Integer
(NEG_DI), 14-13[14-14

Twos Complement Integer (NEG_1),

14-12114-18

Index-3

Index

Count value
forma
range| 102

Counters
area in memory, 10-2
count value

forma
range| 102
instructions used with counters
Down Counter Coil —(CD}, 8-13
practical applications, B-1l-B-{12
Set Counter Value —(SQ), 8t11
Up Counter Coil —(CU], 8-12
Up-Down Counter (S_CUD), 10-3-10-4
number supportefl, 14-2
Counting

down/8-1B, 10-7-10}8
up, 8-1P, 10-5-10t6
up and down, 10-3-10-4
CPU registers, accumulators
count value in accumulatpf |1, 10-2
time value in accumulatof |1, 9-3

Create
data block| 4-4
user prograny, 32

D

Data block (DB)

changing actual valuds, 4-7

instance, 206

methods of creating, 4-2
Data blocks, 213

data view of] 436

declaration view, 415

with associated FB, 4-2

with associated UDT, 42
Data formatSeeNumber notation
Data type, in the declaration ta3—7

Data typed, 713, C}2
Boolean BOOL).'@ 3
BYTE, E
byte,
character CHAR.@ 3
date (D)| 7-B, C3
DATE AND TIME (DT),
double integer (DINT), 7{3, C
double word (DWORD
integer (INT)| 7-B[C13
REAL, 1C-3
real (REAL), C-4-Cl6

2, 0-3

Index-4

S5 TIME,|7-3| C-B, C{9
time (T),[7-8] C-B

time of day (TOD)[744, CI3
user defined, 2}4

Debugging} 3-23
Declaration table
for data blockd, 42
structure when creating a DB, }-5
syntax checK, 415

Declaration type
changing, 3-8
meaning| 3-}

Declaration vie5

DI_BCD. SeeDouble Integer to BCD
conversion instruction

DI_REAL. SeeDouble Integer to Real
conversion instruction

DIV_DI. SeeDivide Double Integer math
instruction

DIV_I. SeeDivide Integer math instruction

DIV_R. SeeDivide Real floating-point math
instruction

Divide Double Integer (DIV_DI) math
instruction, 11-9-11-0

Divide Integer (DIV_I) math instruction,
11-8-111-H

Divide Real (DIV_R) floating-point math
instruction, 12-6-1217

Double integer (DINT), rangk, 18, ¢-3

Double Integer to BCD (DI_BCD) conversion
instruction, 14-8-1419

Double Integer to Real (DI_REAL) conversion
instruction, 14-9-14-30

Double integers

comparing two, 13- 4
format,|C-4
range| C-/

Double word (DWORD)
data type|, C{2
range| 7-8, C13

Down Counter (S_CD) instruction, 10{7—10-8
Down Counter Coil —(CD) instructiop, 8{13
Downloading blockd, 2}6

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Index

E

Edge detection, 8-19-8-25

Edit, the variable declaration tatle, }4-5

Editing, variable declaration tables, 3-8

Editing during program executidn, p-7

Editor, settings for LAD], 313

Enable output (ENOSeeBinary result

Enter Ladder logic elemens, 3119

Errors, binary coded decimal conversion
(BCDF),[14-4[14f7

Examples, practical applications of instructions,
B-2-B-1§

Exception Bit BR Memory —| BR |—
instruction] 19-B

Exception Bit Overflow —| OV |— instruction,
19-7{19-B

Exception Bit Overflow Stored —| OS |—
instruction, 19-9-19-10

Exception Bit Unordered —| UO |— instruction,
19-6{19-F
as related to floating-point math, 1-7

Exponential value, floating-point numbjr, 12-12

Extended Pulse S5 Timer (S_PEXT), 9-74-9-8

Extended Pulse Timer Coil —(SE) instruction,

F

Flipflop, 8-23-8-26

Floating-point math
Arc cosine (ACOS), 12-13-12115
Arc sine (ASIN), 12-13-12-14
Arc tangent (ATAN)[12-13

as related to the Exception Bit Unordered —|

UO |— instruction, 19-6-19-7
Floating-point math instructions, 12[2-12-11
Add Real (ADD_R), 12-3-12}4
Divide Real (DIV_R), 12-6-12}7
Multiply Real (MUL_R), 12-5{-1216
Subtract Real (SUB_R), 12{4-1p-5
valid ranges of resultg, 12-7
Floating—point numbers, data type f8eeReal
number, data type
FLOOR.SeeFloor conversion instruction
Floor (FLOOR) conversion instruction,
14-18-14-19
Format

count valug|, 1012
time value| 9-3

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Function blocks (FBs), 2}-2
calling FBs from a box, 20-4—20-6
supplying parametels, 20-6
Functions (FCs), 2}2
calling FCs from a box, 20-4—20-6
calling FCs with the Call FC/SFC from Coil
instruction, 20-2-2013
supplying parametetls, 20-6

|_BCD. Seelnteger to BCD conversion
instruction

I_DINT. Seelnteger to Double Integer
conversion instruction

Identification of symbold, 3-24

Information overvie

Initial value, with data block§, 4-6

Initial values| 37

Instance data block (D|), 20-6

Instance data bloc -2
creating| 4-4

Instruction browse9

Instructions

See als®perations
alphabetical listing, A-d-A-16
international full names with
international short names, A[2-A-4
international names with SIMATIC
equivalents, A-5-Al8
international short names and SIMATIC
short names$, A-16
SIMATIC names with international
equivalents, A-12-A-15
SIMATIC names with international short
names, A-9FA-11
bit logic, 8-2—8-33
practical applications, B—@—G
comparison, practical applications,
B-11-B-12
counter, practical applications, B-12
dependent on the Master control Relay

(MCR),[20-8
floating-point math, 12-2—12-f1
valid ranges of results, 12-7
integer math
practical applications, B-18—B-[14
valid range for resuItE; 11-11
practical applications, B—E—B—llG
rotate, 16-10-16-13

Index-5

Index

shift, 16-2—-16-13
shift and rotate, 16-2—16-18
status bit, 19-2—-19-12
that evaluate the condition codes (GC 1 and
cco)[12
that evaluate the overflow bit (OV) of the
status word], 1217
that evaluate the stored overflow bit (OS) of
the status wordl, 12-7
timer, practical applications, B7—BJ10
word logic, 15-2-15-14
practical applications, B-14—B-L5
Integer (INT), rangd, 7}8, G-3
Integer math, valid range for results, 11-11
Integer math instructions
Add Double Integer (ADD_DI), 11-8-11-4
Add Integer (ADD_1), 11-2-11}3
Divide Double Integer (DIV_DI),
11-9-11-19
Divide Integer (DIV_1), 11-8-1119
Multiply Double Integer (MUL_DI),
11-7-11-8
Multiply Integer (MUL_1), 11-6L11-7
practical applications, B-13-B{14
Return Fraction Double Integer (MOD_DI),
11-10f11-1f
Subtract Double Integer (SUB_DI),
11-5-[11-p
Subtract Integer (SUB_1), 11-4-11-5
Integer to BCD (I_BCD) conversion instruction,
14-5]14-6

Integer to Double Integer (I_DINT) conversion

instruction, 14-6F14]7

Integers
comparing two, 13-4-13-3
formatC-3

International full names for instructions,
alphabetical listing, with international short
names, A-2FA}4

International names of instructions, alphabetical
listing, with SIMATIC equivalents, A-3-Al8

INV_DI. SeeOnes Complement Double Integer
conversion instruction

INV_I. SeeOnes Complement Integer
conversion instruction

Invert Power Flow —|NOT|— instructidn, 8-7

J

Jump —(JMP) instruction, 183-1B-4
Jump-lf-Not —(JMPN) instruction, 18-5

Index-6

K
Know-how-protectior], 513

L
Label[18-b

as address of a jump (logic control)
instruction[182

LAD. Seel.adder Logic
Ladder, ruled, 3-15
Ladder Logic (LAD), definition of, 1]1
Ladder program

status, possible settings, p-6

testing| 5-p
Libraries| 3-2D
Loading a count value

format, 10-P

range| 7-B, C13
Loading a time value

format, 9-2

range| 7-8, C13
Logarithm, natural

Logic blocks
creating[3
in the Incremental Editdr, 3-2
structure| 312

Logic control instructions
Jump —(IMP), 18-3-18-4
Jump-Ilf-Not —(JMPN)| 185
label as address, 18-2

M

Master Control Relay (MCR)
dependency of, 20-8
effect on Set Coil —(S) and Reset Coil
—(R) instructiond], 20}8
Master Control Relay (MCR) instructions,
20-8-20-16
Master Control Relay Off —(MCR>),
20-12420-1B
Master Control Relay On —(MCR<),
20-12420-1B
nesting operations, 20-11.3
Master Control Relay Off —(MCR>)
instruction, 20-12-20-13
Master Control Relay On —(MCR<)
instruction, 20-12-20-13
Memory areas, counter, 10-2
Method of creating a DB, selectifg, 4-4

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Index

Midline Output —(#)— instruction, 8-6=8-7

MOD_DI. SeeReturn Fraction Double Integer
math instruction

MOVE. SeeAssign a Value instruction

Move instructions, Assign a Value (MOVE),
14-2-114-B

MUL_DI. SeeMultiply Double Integer math
instruction

MUL_I. SeeMultiply Integer math instruction

MUL_R. SeeMultiply Real floating-point math
instruction

Multiple instances

calling[3-10] 3-2p

declaring| 3-10
rules for declaring, 3-10

Multiply Double Integer (MUL_DI) math
instruction, 11-7-11}8

Multiply Integer (MUL_I) math instruction,
11-6-{11-7

Multiply Real (MUL_R) floating-point math
instruction, 12—56

N

Natural logarithm, floating-point number, 12}11

NEG. SeeAddress Negative Edge Detection
instruction

NEG_DI. SeeTwos Complement Double
Integer conversion instruction

NEG_I.SeeTwos Complement Integer
conversion instruction

NEG_R.SeeNegate Real Number conversion
instruction

Negate Real Number (NEG_R) conversion
instruction, 14-14-14-15

Negative RLO Edge Detection —(N)—
instruction] 8-2p

Nesting operations, Master Control Relay
(MCR),[20-13

Network
inserting] 3-1
selecting), 3-1

Normally Closed Contact (Address) —|/|—
instruction, 8-4-815

Normally Open Contact (Address) —| |—
instruction, 8-3-84

Number formatSeeNumber notation

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Number notation, C-3—C-9
binary coded decimal (BCO), G-8
bit,[C-2
byte[C-2
DATE AND TIME (DT),
double integef, Cl4

double word| C-
floating-point, C-4-Cl6
integer| C-B

real, C-4-C6

S5 TIME,[C-9
word,[C-2

O
Off-Delay S5 Timer (S_OFFDT), 9-13-9114
on, 81

Off-Delay Timer Coil —(SF) instructi 18
On-Delay S5 Timer (S_ODT), 9-p—9l11
On-Delay Timer Coil —(SD) instructioh, 8116
Ones Complement Double Integer (INV_DI)
conversion instruction, 14-12
Ones Complement Integer (INV_I) conversion
instruction, 14-11
Open, a blocK, 215
OperationsSeelnstructions
OR instruction, Ladde}, 3-21
Order, blocks|, 217
Organization blocks, 212
Output Coil —() instruction, 8-5-§-6
Overflow (OV)
as affected by floating-point math
instructions| 1247
Exception Bit Overflow —| OV |—

instruction, 19-7F1918

Overwrite modd, 3-26
Overwriting

addresses/parametdrs, 3-26
junctions in Laddef, 3-27
Ladder element§, 3-P6

P

Parallel branch, 3-21
opening| 3-22

Parameter, entering in Ladder, 3-23

Index-7

Index

POS.SeeAddress Positive Edge Detection
instruction
Positive RLO Edge Detection —(P)—
instruction| 8-198
Power flow, inverting| 817
Program control instructions
Call FC/SFC from Coil —(CALL),
20-2-20-B
Master Control Relay Off —(MCR>),
20-12{20-1B
Master Control Relay On —(MCR<),
20-12-120-1B
Return —(RET)| 20}7
Program statu§, §-5
See alsdest
selecting the call environmeft, 5-7
settings
starting and stoppingj, 5-8
Programming, practical applications, B-2—B-16
Programming language, selectipn,|2-5
Pulse S5 Timer (S_PULSE), 9{5-9-6
Pulse Timer Coil —(SP) instruction, 8-14-§-15

R

Real number
comparing two real numbers, 13[5-13-6
data type|, 713, CI3
format, C-41-C-p
range[7-4, C{3

Reinitialize, an actual valup, 4-7

Reinitializing,[4-T

Repetition factor, 319

Reset Coil —(R) instructioh, 8J10

Reset Set Flipflop (RS) instruction, 8-24—8-25

Result Bit instructions, 19-4—19-5

Result of logic operation (RLO)
inverting,[8-7
negating| 87

Retentive On-Delay S5 Timer (S_ODTS),
9-11-{9-12

Retentive On-Delay Timer Coil —(SS)
instruction| 8-1f

Return —(RET) instructiof, 24-7

Return Fraction Double Integer (MOD_DI)
math instruction, 11-10-11411

ROL_DW. SeeRotate Left Double Word
instruction

ROR_DW.SeeRotate Right Double Word
instruction

Index-8

Rotate instructions, 16-10-16-13
Rotate Left Double Word (ROL_DW),
16-10416-11L
Rotate Right Double Word (ROR_DW),
16-11-[16-1p
Rotate Left Double Word (ROL_DW)
instruction, 16-10-16-11
Rotate Right Double Word (ROR_DW)
instruction, 16-11-16-12
ROUND. SeeRound to Double Integer
conversion instruction
Round to Double Integer (ROUND) conversion
instruction, 14-15-14-16

RS.SeeReset Set Flipflop instruction

Rules, Ladde5

S

S AVERZ.SeeOff-Delay S5 Timer instruction,
SIMATIC short name
S _CD.Seesee Down Counter instruction
S _CU.Seesee Up Counter instruction
S_CUD.SeeUp-Down Counter instruction
S_EVERZ.SeeOn-Delay S5 Timer instruction,
SIMATIC short name
S _IMPULS.SeePulse S5 Timer instruction,
SIMATIC short name
S _ODT.SeeOn-Delay S5 Timer instruction
S_ODTS.SeeRetentive On-Delay S5 Timer
instruction
S OFFDT.SeeOff-Delay S5 Timer instruction
S PEXT.SeeExtended Pulse S5 Timer
instruction
S _PULSE SeePulse S5 Timer instruction
S_SEVERZSeeRetentive On-Delay S5 Timer
instruction, SIMATIC short name
S _VIMP. SeeExtended Pulse S5 Timer
instruction, SIMATIC short name
S5 TIME
format,[C-9
range| 7-B, C13
time base, 9-2-918, d-9
time value| 9
Save RLO to BR Memory —(SAVE)
instruction| 8-B
Saving blocks, 216
Scan timel, 5]9
Selecting
in networks| 3-18
Ladder instruction$, 3-18

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Index

Set Coil —(S) instructiof, §-9
Set Counter Value —(SC) instructipn, §-11
Set Reset Flipflop (SR) instruction, 8-23—§-24
Setting
the Editor in LAD[3-B
the Ladder program statis, |5-6
Setting a counter valie, 8111
SFB,[2-4
SFC/[2-h
Shift and rotate instructions, 16-2—-16-18
Shift instructions, 16-2—16-13
Shift Left Double Word (SHL_DW),
16-4-116-5
Shift Left Word (SHL_W), 16-216}3
Shift Right Double Integer (SHR_DI),
16-9-16-1p
Shift Right Double Word (SHR_DW),
16-6-16-7
Shift Right Integer (SHR_I), 16-7—16-8
Shift Right Word (SHR_W), 16-5-16-6
Shift Left Double Word (SHL_DW) instruction,
16-4-16-5
Shift Left Word (SHL_W) instruction,
16-2-16-B
Shift Right Double Integer (SHR_DI)
instruction, 16-9-16-10
Shift Right Double Word (SHR_DW)
instruction, 16-6-16}7
Shift Right Integer (SHR_I) instruction,
16-7-416-B
Shift Right Word (SHR_W) instruction,
16-5{16-p
SHL_DW. SeeShift Left Double Word
instruction
SHL_W. SeeShift Left Word instruction
SHR_DI.SeeShift Right Double Integer
instruction
SHR_DW.SeeShift Right Double Word
instruction
SHR_I.SeeShift Right Integer instruction
SHR_W.SeeShift Right Word instruction
SIMATIC Manager
SIMATIC names of instructions, alphabetical
listing
with international equivalents, A-12—A-{15
with international short names, A 11
Splitting junctions, Laddef, 3-p7
Square, floating-point number, 12[9-13-10
Square root, floating-point number, 13-9-12-10

SR.SeeSet Reset Flipflop instruction
Standard block, 5}3

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Status bit instructions, 19-2—-19-12

Exception Bit BR Memory —| BR |-F, 1p-3

Exception Bit Overflow —| OV |—,
19-7-19-B

Exception Bit Overflow Stored —| OS |—,
19-9{19-1p

Exception Bit Unordered —| UO |—,
19-6-19-f

Result Bits, 19-4-19}5

Status word

binary result (BR) bif, 19{3

condition codes (CQ 1 and CC 0) as related
to the Exception Bit Unordered
instruction, 19-6-1917

condition codes (C 1 and CC 0) as related
to the Result Bits instructions, 19{4-19-5

effect of calling an FB, FC, SFB, or SFC on
the bits of the status word, 2p-4

invalid range for the result of integer math,

overflow bit, 19-78

status bit instructions, 19-2-19-12

stored overflow (OS) bit, 19-p=19{10

structure[192

valid range for the result of integer math,

STL

Incremental Editof, 2}4
starting the Editof, 2[4
Stored overflow (OS)
as affected by floating-point math
instructions| 1247
Exception Bit Overflow Stored —| OS |—
instruction, 19-9-19-10
Structures, in the variable declaration taple} 3-8
SUB_DI.SeeSubtract Double Integer math
instruction
SUB_I. SeeSubtract Integer math instruction
SUB_R.SeeSubtract Real floating-point math
instruction
Subtract Double Integer (SUB_DI) math
instruction, 11-5-1116
Subtract Integer (SUB_I) math instruction,
11-4-11-6
Subtract Real (SUB_R) floating-point math
instruction, 12-4-1215
Symbol informatior|, 3-24
Symbol table] 3-24
Symbolic addressinfy, 3-p4
practical examplg, B3
Syntax checH, 415

Index-9

Index

System function blocksSeeSFB

System function blocks (SFBs)
calling SFBs from a box, 20-4—20-6
supplying parameters, 20-6

System functionsSeeSFC

System functions (SFCs)
calling SFCs from a box, 2044—-20-6
calling SFCs with the Call FC/SFC from

Coil instruction, 20-2-2013

supplying parameters, 20-6

T
Test environment

selecting, 5-8
Testing a Ladder prograi, 5-5
Time base, reading, 9-3

Time of day (TOD), range, 7-8, G-3
Time resolutionSeeTime base for S5 TIME
Time stamp confli09
Time value
format in accumulatdd 1, 9-3
range, 9-21-913
reading[9-B
syntax/ 9-p
Timers
components, 9-2—9-3
instructions used with timers
Extended Pulse S5 Timer (S_PEXT),
0708
Extended Pulse Timer Coil —(SE), 8-15
Off-Delay S5 Timer (S_OFFDT),
9-1319-1h
Off-Delay Timer Coil —(SF), 8-18
On-Delay S5 Timer (S_ODT), 9-9-9}11
On-Delay Timer Coil —(SD], 8-16
practical applications, B-f—B-10
Pulse S5 Timer (S_PULSE), 9{5-9-6
Pulse Timer Coil —(SP), 8-14-8}15
Retentive On-Delay S5 Timer
(S_ODTS), 9-11f9-12
Retentive On-Delay Timer Coil —(SS),
8-1
location in mem02
number supportefl, 9-2
reading the time and the time base| 9-3
resolution.SeeTime base for S5 TIME
time base for S5 TIME, 9-2—9-3

Index-10

time value[9
range, 9-21-913
syntax[9-P
types, overview, 914
Title
block title,[3-28
network title] 3-28
Trigger conditions, 57
Trigonometrical functions, anglés, 12}13
TRUNC. SeeTruncate Double Integer Part
conversion instruction
Truncate Double Integer Part (TRUNC)
conversion instruction, 14-16-14}17
Twos Complement Double Integer (NEG_DI)
conversion instruction, 14-114
Twos Complement Integer (NEG_I) conversion
instruction, 14-12-14-13

U
uDT,

See alsdJser defined data types
creating[4-B
definition, |4-2
function[4-8
Unlinked,[5-B
Up Counter (S_CU) instruction, 10{5-10-6
Up Counter Coil —(CU) instructiop, 8412
Up-Down Counter (S_CUD) instruction,
10-3-110-4
User data typé, 418
definition, |4-2
User program
creating[2-#
structure| 242
User-defined data typeSeeUDT

User-defined data types (UDT), P-4

Vv

Variable[3-f

Variable declaration tablB-G
editing 3-8
purpose,, 3-
structure| 316

W

WAND_DW. See(Word) And Double Word
instruction
WAND_W. Seg(Word) And Word instruction

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Index

WOR_DW.Seg(Word) Or Double Word
instruction
WOR_W.See(Word) Or Word instruction
WORD, range], 713, CI3
Word, data type, C|2
Word logic instructions, 15-2-15-14
(Word) And Double Word (WAND_DW),
15-4-115-5
(Word) And Word (WAND_W), 15-3-1514
(Word) Exclusive Or Double Word
(WXOR_DW), 15-8-15-9
(Word) Exclusive Or Word (WXOR_W),
15-7-115-8
(Word) Or Double Word (WOR_DW),
15-6-{15-7
(Word) Or Word (WOR_W), 15-5-15-6
tois

practical applications, B-1

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

WXOR_DW. Seg(Word) Exclusive Or Double
Word instruction

WXOR_W. Seg(Word) Exclusive Or Word
instruction

Z

Z RUECK.SeeDown Counter instruction,
SIMATIC short name

Z_VORW. SeeUp Counter instruction,
SIMATIC short name

ZAEHLER. SeeUp-Down Counter instruction,
SIMATIC short name

Index-11

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02

Siemens AG
AUT E 146

Ostliche Rheinbriickenstr. 50
D-76181 Karlsruhe
Federal Republic of Germany

From:

Your Name:._

Your Title:

Company Name:
Street:

Country:
Phone:

Please check any industry that applies to you:

Automotive Pharmaceutical

Chemical Plastic
Electrical Machinery
Food

Instrument and Control

Pulp and Paper
Textiles
Transportation

O 0O o0oo0ogo o

Nonelectrical Machinery

O Ooooogoogd

Petrochemical

Ladder Logic (LAD) for S7-300 and S7-400
C79000-G7076-C504-02 1

Remarks Form

Your comments and recommendations will help us to improve the quality and usefulness
of our publications. Please take the first available opportunity to fill out this questionnaire
and return it to Siemens.

Please give each of the following questions your own personal mark within the range
from 1 (very good) to 5 (poor).

1. Do the contents meet your requirements? D
2. Is the information you need easy to find? D
3. Is the text easy to understand? D
4, Does the level of technical detail meet your requirements? D
5. Please rate the quality of the graphics/tables: D

Additional comments:

Ladder Logic (LAD) for S7-300 and S7-400
2 C79000-G7076-C504-02

	Title
	Preface
	Contents
	Part 1
	1 Product Overview
	2 Introduction
	2.1 Structure of User Programs
	2.2 Creating User Programs – Overview
	2.3 Rules to Observe

	3 Creating Logic Blocks
	3.1 Creating Logic Blocks – Overview
	3.2 Logic Blocks in the Editor
	3.3 Structure of the Variable Declaration Table
	3.4 Editing Variable Declaration Tables – Overview
	3.5 Declaring Multiple Instances
	3.6 Assigning System Attributes for Parameters
	3.7 Editing the Code Section – Overview
	3.8 Basic Guidelines for Entering Ladder Logic Instructions
	3.9 Entering Ladder Elements
	3.10 Creating Parallel Branches
	3.11 Editing Addresses and Parameters
	3.12 Symbolic Addressing
	3.13 Editing in the Overwrite Mode
	3.14 Entering Titles and Comments

	4 Creating Data Blocks and User-Defined Data Types
	4.1 Creating Data Blocks – Overview
	4.2 Selecting a Method
	4.3 Editing the Declaration Table
	4.4 Editing Actual Data Values
	4.5 Creating User-Defined Data Types (UDTs)

	5 Editing the Block Properties and Testing the Program
	5.1 Editing the Block Properties
	5.2 Testing your Ladder Program - Overview
	5.3 Setting the Program Status
	5.4 Setting the Trigger Conditions
	5.5 Choosing a Test Environment and Starting/Stopping the Program Status

	Part 2
	6 Configuration and Elements of Ladder Logic
	6.1 Elements and Boxes
	6.2 Boolean Logic and Truth Tables
	6.3 Significance of the CPU Registers in Instructions

	7 Addressing
	7.1 Overview
	7.2 Types of Addresses

	8 Bit Logic Instructions
	8.1 Overview
	8.2 Normally Open Contact
	8.3 Normally Closed Contact
	8.4 Output Coil
	8.5 Midline Output
	8.6 Invert Power Flow
	8.7 Save RLO to BR Memory
	8.8 Set Coil
	8.9 Reset Coil
	8.10 Set Counter Value
	8.11 Up Counter Coil
	8.12 Down Counter Coil
	8.13 Pulse Timer Coil
	8.14 Extended Pulse Timer Coil
	8.15 On-Delay Timer Coil
	8.16 Retentive On-Delay Timer Coil
	8.17 Off-Delay Timer Coil
	8.18 Positive RLO Edge Detection
	8.19 Negative RLO Edge Detection
	8.20 Address Positive Edge Detection
	8.21 Address Negative Edge Detection
	8.22 Set Reset Flipflop
	8.23 Reset Set Flipflop

	9 Timer Instructions
	9.1 Location of a Timer in Memory and Components of a Timer
	9.2 Choosing the Right Timer
	9.3 Pulse S5 Timer
	9.4 Extended Pulse S5 Timer
	9.5 On-Delay S5 Timer
	9.6 Retentive On-Delay S5 Timer
	9.7 Off-Delay S5 Timer

	10 Counter Instructions
	10.1 Location of a Counter in Memory and Components of a Counter
	10.2 Up-Down Counter
	10.3 Up Counter
	10.4 Down Counter

	11 Integer Math Instructions
	11.1 Add Integer
	11.2 Add Double Integer
	11.3 Subtract Integer
	11.4 Subtract Double Integer
	11.5 Multiply Integer
	11.6 Multiply Double Integer
	11.7 Divide Integer
	11.8 Divide Double Integer
	11.9 Return Fraction Double Integer
	11.10 Evaluating the Bits of the Status Word After Integer Math Instructions

	12 Floating-Point Math Instructions
	12.1 Overview
	12.2 Add Floating-Point Numbers
	12.3 Subtract Floating-Point Numbers
	12.4 Multiply Floating-Point Numbers
	12.5 Divide Floating-Point Numbers
	12.6 Evaluating the Bits of the Status Word After Floating-Point Instructions
	12.7 Establishing the Absolute Value of a Floating-Point Number
	12.8 Establishing the Square and/or the Square Root of a Floating-Point Number
	12.9 Establishing the Natural Logarithm of a Floating-Point Number
	12.10 Establishing the Exponential Value of a Floating-Point Number
	12.11 Establishing the Trigonometrical Functions of Angles as Floating-Point Numbers

	13 Comparison Instructions
	13.1 Compare Integer
	13.2 Compare Double Integer
	13.3 Compare Floating-Point Numbers

	14 Move and Conversion Instructions
	14.1 Assign a Value
	14.2 BCD to Integer
	14.3 Integer to BCD
	14.4 Integer to Double Integer
	14.5 BCD to Double Integer
	14.6 Double Integer to BCD
	14.7 Double Integer to Floating-Point Number
	14.8 Ones Complement Integer
	14.9 Ones Complement Double Integer
	14.10 Twos Complement Integer
	14.11 Twos Complement Double Integer
	14.12 Negate Floating-Point Number
	14.13 Round to Double Integer
	14.14 Truncate Double Integer Part
	14.15 Ceiling
	14.16 Floor

	15 Word Logic Instructions
	15.1 Overview
	15.2 WAnd Word
	15.3 WAnd Double Word
	15.4 WOr Word
	15.5 WOr Double Word
	15.6 WXOr Word
	15.7 WXOr Double Word

	16 Shift and Rotate Instructions
	16.1 Shift Instructions
	16.2 Rotate Instructions

	17 Data Block Instructions
	17.1 Open Data Block: DB or DI

	18 Jump Instructions
	18.1 Overview
	18.2 Jump in the Block If RLO = 1 (Unconditional Jump)
	18.3 Jump in the Block If RLO = 1 (Conditional Jump)
	18.4 Jump in the Block If RLO = 0 (Jump-If-Not)
	18.5 Label

	19 Status Bit Instructions
	19.1 Overview
	19.2 Exception Bit BR Memory
	19.3 Result Bits
	19.4 Exception Bits Unordered
	19.5 Exception Bit Overflow
	19.6 Exception Bit Overflow Stored

	20 Program Control Instructions
	20.1 Calling FCs/SFCs from Coil
	20.2 Calling FBs, FCs, SFBs, SFCs, and Multiple Instances
	20.3 Return
	20.4 Master Control Relay Instructions
	20.5 Master Control Relay Activate/Deactivate
	20.6 Master Control Relay On/Off

	Appendix
	A Alphabetical Listing of Instructions
	A.1 Listing with International Names
	A.2 Listing with International Names and SIMATIC Equivalents
	A.3 Listing with SIMATIC Names
	A.4 Listing with SIMATIC Names and International Equivalents
	A.5 Listing with International Short Names and SIMATIC Short Names

	B Programming Examples
	B.1 Overview
	B.2 Bit Logic Instructions
	B.3 Timer Instructions
	B.4 Counter and Comparison Instructions
	B.5 Integer Math Instructions
	B.6 Word Logic Instructions

	C Number Notation
	C.1 Number Notation

	D References
	Glossary
	A
	B
	C
	D
	F
	I
	K
	L
	M
	N
	O
	P
	R
	S
	U
	V

	Index
	Symbols
	A
	B
	C
	D
	E
	I
	F
	K
	L
	M
	J
	O
	N
	P
	S
	R
	T
	U
	V
	W
	Z

	Customer reply slip

